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Application of the finite difference method at arbitrary
irregular grids to solution of various problems
of applied mechanics
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1. Introduction

It has been observed, that the finite element method (FEM) can
be easier applied to treat irregular domain than the finite diiference techni-
que (FDM).

By using an arbitrary irregular mesh of nodal points one can preserve the
basic advantages of the classical FDM and avoid its main difficulties. An arbitrary
grid permits the satisfaction of boundary conditions in the case of an irregular
shape of a domain and enables a local condensation of a mesh. On the other
hand, several new problems mainly associated with the automatic generation
of FD formulae may arise.

The basic assumptions of the method were suggested by Jensen [1].
A six-point control scheme, combined with the two-dimensional Taylor’s series
expansion, was adopted for obtaining FD formulae with derivatives up to the
second order. Kgczkowski and Tribilto [2] extend this approach for higher
order derivative terms. Perrone and Kao [3] have suggested a nine-point control
scheme with an averaging process to improve the accuracy of obtained FD
formulas.

In the present paper we continue investigations of irregular FD techniques
[4—5). A new “optimal” way of generation of the FD formulae has been intro-
duced. For two dimensional, second order problems the nine-point control
scheme has been used, but the procedure remains applicable for wider problems.

The set of computer programs in Algol 1204 was tested by calculating
several both linear and non-linear problems of mechanics. The programs are
fully automatic like those based on the FEM and are specially designed for
the solution of large systems by using a small computer “Odra 1204”.

2. Automatic selection of “stars”

All the points included to the control scheme we call “a star”
of nodes. The most important problems caused by irregular mesh appear during
the automatic selection of stars. The -number and the positions of the nodes
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in each star are the decisive factors affect-
ing FD formulae approximations.

The “eight segments” criterion suggest-
ed by Perrone and Kao [3] results in well
selected stars, but it appears to be too
rigorous, overly complicated and too time
consuming for the computer. In the present
paper the analogous, however much simpler
and quicker procedure was applied with
good results. The domain around the central
point is divided into four quadrants and
two nearest points in each of them are
included into the star (Fig. 1). The control
for the node can be performed only by:
distance computing, comparing the sigus
of the local coordinates of the node.

[l
llli=

Fig. 1

3. Difference coefficients for irregular meshes

For any sufficiently differentiable function f(x,y) in a given
domain the Taylor series expansion around a point (x; y,) can be written as

g d ne o2 k2 02 0
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where
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Writing eq. (1) for each of m nodes in the star, we arrive to the set of
linear equations

[A{Df}—{f}=1{0},
where
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for the five unknown derivatives at the point (x,, y,)
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The main difficulties in successful application of considered attempt is how to
avoid a singularity or an ill condition in matrix [A4] of eq. (2) and in obtain-
ing acceptable derivatives. By selecting more nodes in a star (m>5) it is
more probable to have sufficient amount of equations to obtain good appro-
ximation of derivatives. Then the Egs. (2) become an overdetermined set of
linear equations. Its solution is obtained by minimization of a norm

B= 2[(fo~fz+of° afok-i- )—A%]zzmin.

i
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Writing
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we arrive to a set of five equations
with five unknowns.

The weight coefficients (1/49)
are inversely related to the error
term in eq. (1) considering that the  Fig. 2. FD formulas for p*(*4?)
nearest points have more influence ) °Pfiied D) chisicalone 5
on the results. For the regular square
mesh and 9 point star this method
produces values of the derivatives
one order more accurate when
compared to classical FD formulae
(Fig. 2). In the case of irregular
mesh it results also in better solu-
tion (see section 7).

The value of m depends on the
mesh, especially in the typical
(regular) regions. As far as possible
for saving computer time, we assume
square or rectangular mesh, so that
nine-point stars are suggested. Fig. 3

4. Assignment of an area

In nonhomogeneous problems it is necessary to define the do-
main assigned to each mnode. This problem becomes especially important for
analysis based on a variational approach (energy minimization).

The simplest proposals assign eachnode of the circle with radius depend-
ent on the star size or the area of polygon circumscribing the star. Then the
reasonable coefficient is applied to ensure the proper value of the sum of the
areas, which should be equal to the area of the whole domain. Two interesting
solutions are based on the triangulation of the entire domain (Fig. 3).

Subsequently the nodesare located in the centers of gravity of the triangles
or in the apexes of triangles (then 1/3 of an area of surrounging triangles is
assigned to the node). The independence of the area assignment and the star
shape is the main imperfection of these two approaches.

5. Application to non-elliptic equations

For time-dependent problems we usually arrive to parabolic or
hyperbolic differential equations. At this point it becomes necessary to ensure
the stability of the generated formulae. So far there are no theoretical investi-
gations in this problem.

Furthermore, various FD formulae, generated simply by Taylors expansi-
ons, produce often non-stable approximations.
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Fig. 5, a,b

Applying the mesh invariant in time, it is possible to avoid these difficulties
In thjs case we can introduce into calculations the stable formulae for the time
derivatives.

The expressions for the space derivatives (in x, y coordinates) may now
be generated automatically.

As an illustration of the method discussed two possible approximations
for the time dependent problem of heat transfer

9 O [0 Of
) 79 = STt

oy: ot
have been tested (Fig. 4).

The first scheme becomes stable only for reasonably small value A¢ (mesh
size in time). They should be evaluated according to the smaliest space size of
analysed mesh (if not, the results become unstable arourd the finest regions
of the grid). The second scheme (Fig. 4,b) need more calculations (solving of
the set of linear equations for each time step). It makes it possible, however,
to assume larger time mesh spaces.

6. Non-linear problems
The FDM is universally applicable to both linear and non-linear

prob ems. For nonlinear problems various iterative procedures can be applied.
The Newton-Raphson and selfcorrecting procedures converge faster than other
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approaches. They have been adopted for the FDM at arbitrary irregular grids.
Designation of the “slope matrix” was made by means of previously calculated
coefficients of the FD formulae.

Using FD formulation for some nonlinear problems (like elastic-plastic
torsion of a bar) leads to increased errors in the vicinity of an elastic-plastic
boundary (e. g. line 3, Fig. 9). They are caused by discontinuous slope of
proper solution at this boundary. The arbitrary mesh enables to improve these
results by inserting additional nodes along the elastic-plastic boundary and
introducing an additional boundary value problem. If the assumed elastic bo-
undary is not correct, then the mesh should be redefined during the com-
putation.

7. Numerical results

As an example the Poisson’s equation
©) V=

for the domain shown in Fig. 5 has been solved. The solution (Fig. 5, a) can
be a stress function for the torsion of a prysmatic bar. The stress distribution
is mapped in Fig. 5, b.

Fig. 6 illustrates the convergence of the solution with the number of nodes
for 3 analogous programs:

a) selection of the star based on distance criterion only and generating
FD formulae by the averaging process [3];

b) selection based on distance criterion and minimization procedure used
for FD formulae;

c) selection of stars by “four quadrants criterion snd minimization pro-
cedure.

The CPU time consumption for the best program (¢ version) for selection of
stars and generation of FD formulae for 329 inner nodes was 177 seconds
(i. e. about 0.8 CPU seconds of CYBER 70 computer).

Temperature distribution problem for the square bar with uniformly heated
boundary along y= 41 line and constant zero temperature along x==+1 line
(Fig. 7) has been examined. The diagram (Iig. 8) shows the mfluence of addi-
tional nodes outside the boundary.
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A physically nonlinear problem of a torsion of an elastic-plastic bar has
been solved. Fig. 9 illustrates the elastic-plastic boundaries for several steps
of the torsion process. Geometrical nonlinearity has been analysed on the case
of a perfect membrane (Figs. 10, 11).

Presented solutions show the applicability of the FDM at arbitrary grids
to wide class of problems of applied mechanics.

8. Conclusions

Future development of the presented set of programs will enable
considerable increase of application of the method. Further research is also
required for analysis based on a variational approach, mainly for precise defin-
ing of the assigned areas for integration. The basic advantage of this appro-
ach is in the fact that in the energy expression the highest order of the deri-
vatives is only one-half of that obtained in the differential approach. For the
present, the method permits to solve various real problems of applied mecha-
nics. Due to the successful solution of the difficulties discussed, FDM at irre-

110



gular meshes is universal enough to be competitive for the FEM, especially for
the problems with physical or geometrical nonlinearities, optimization and time
and/or temperature dependence.
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