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ABSTRACT: The Poiseuille flows of non-Newtonian fluids may have com-
plicated structures depending on the rheological characteristics of the fluid.
The Carreau-Yasuda viscosity model is often used to describe the behaviour of
many complex fluids. The Poiseuille flow of such fluids has many applications
and occurs as a fundamental problem from a practical and theoretical point of
view. At high shear rates, the flow may become unstable, then the Poiseuille
flow problem may have no solution. In this paper, we prove the condition for
the existence of its classical solution.

KEY WORDS: Carreau–Yasuda fluid, Poiseuille flow, classical solution, nega-
tive power index.

1 INTRODUCTION

Although the Newtonian fluid model describes well the behaviour of many fluids of
common usages, such as water and air, it is not appropriate for polymer solutions, bio-
fluids, polymer melts, suspensions, etc. The understanding of the dynamics of such
fluids is of primary importance for many applications, for example, blood flow in
arteries, plastic manufacturing, paint extrusion, nanomaterials depositions, food pro-
cessing and others. Apart from their experimental study, also theoretical studies are
performed to predict their behaviour during the different process cases. These studies
rely on adequate rheological models describing the relationship between stress and
shear rate.

The generalized Newtonian model can be successfully applied to a major part of
the non-Newtonian fluids. Since it is built on a minor modification of the Newtonian
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constitutive equation for viscosity, it occurs useful for solving many practical prob-
lems of non-Newtonian flows. In particular, these models are nonlinear, such as the
power law, the Carreau model and its generalization - the Carreau-Yasuda model, the
Casson model, the Cross model, etc. [1, 2]. Although the power law model is very
simple to obtain analytical solutions for fluid flows in different geometrical configura-
tions, it has a limited application for shear-thinning fluids, for example. These fluids
are characterized by a decreasing viscosity function of the shear rate with a plateau at
a very small shear rate, which is impossible to be described by the power law model.
Indeed, the Carreau four-parameter model or its modification - the Carreau-Yasuda
model with five parameters is more suitable for further numerical calculations of
many fluid flows (analytical solutions are difficult to be found). The Carreau-Yasuda
model is given by the apparent viscosity function µapp(γ̇):

(1.1) µapp = µ∞ + (µ0 − µ∞)[1 + λαγ̇α](n−1)/α,

where γ̇ is the shear rate, µ0 is the viscosity at zero shear rate γ̇ → 0, and µ∞ is
the viscosity at infinite shear rate γ̇ → ∞, λ is the relaxation time, n is the behav-
ior index and α is a dimensionless parameter (α = 2 for the Carreau model). All
these parameters are determined after fitting with the results from the rheological
experiments.

According to the value of the power index n, the fluids can be grouped as shear
thickening at n > 1 or shear thinning at n < 1. The Newtonian fluid corresponds to
n = 1. Sometimes at high shear rates, the shear thinning fluids become unstable with
a negative slope of stress, which corresponds to n < 0 in the Carreau-Yasuda model
(1.1). This phenomenon is explained as a shear-banding, for example in [3–5].

The shear thinning fluids have been treated in our previous works as applica-
tions for the blood oscillatory flows in arteries, considered as straight channels [6]
or pipes [7, 8]. The general unsteady flow of a shear-thinning fluid in a pipe was
discussed in [9] at 0 < n < 1 and in [10] for an arbitrary value of n. In [6, 7, 9]
we used the Carreau model, while in [8, 10, 11] – the Carreau-Yasuda model. In
these papers, the velocity and its gradient estimates are proved, as well as their dif-
ferences from the corresponding Newtonian functions. We considered the cases of
arbitrary n for unsteady [8, 10] and steady [11] flows and found that the unsteady
problem becomes uniformly parabolic, nonuniformly parabolic, degenerate parabolic
or backward parabolic depending on the value of n. For the steady case, the prob-
lem is elliptic and in [11] it is proved that has a classical solution if a necessary and
sufficient condition is fulfilled, which depends on the model parameters.

Thus, the question of a classical solution existence for the general unsteady case
(unsteady Poiseuille flow) is still an open problem, and we shall try to resolve it
in the present paper. In some sense, this paper is a prolongation of our previous
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papers [8, 9] and [11]. We shall recall the existence theorem for the steady case
from [11] as Theorem 2.1 in Section 2, while in Section 3 we shall prove the existence
of a classical solution for the general unsteady case as Theorem 3.1.

2 PRELIMINARIES

The unsteady Poiseuille flow is considered in a pipe with radius Rp in cylindrical
coordinates (x, r, ϕ), where 0 ≤ r ≤ Rp and −∞ < x < ∞. The flow is driven by
an arbitrary pressure gradient Af(t) along the pipe axis with a dimensional constant
A and dimensionless function f(t) of time t. The flow is supposed unsteady laminar
with velocity vector (vx(t, r), 0, 0), which follows from the continuity and momen-
tum equations. As a result, the axial velocity vx(t, r) is subjected to the equation:

(2.1) ρ
∂vx
∂t

= Af(t) +
1

r

∂

∂r

[
µapp (γ̇) r

∂vx
∂r

]
,

where ρ is the density and the apparent viscosity function µapp(γ̇) is given by (1.1),

with γ̇ =
∂vx
∂r

.

The initial condition as a smooth function of r, and the boundary conditions will
be given in their dimensionless form in eq. (2.3).

UsingH as a characteristic length (r = HY,H can be the pipe radiusRp or some
other appropriate length), t0 as a characteristic time (t = t0T ) and B = AH2/µ0 as
a characteristic velocity (vx = BU ), the dimensionless form of eq. (2.1) becomes

P0U=8β2UT−
1

Y

∂

∂Y

{[
1− c+ c(1 + Cuα | UY |α)

n−1
α

]
Y UY

}
= f(T ),(2.2)

in Q = {(T, Y );T > 0, Y ∈ (0, R)}

with boundary and initial conditions,

(2.3) UY (T, 0) = U(T,R) = 0 for T ≥ 0, U(0, Y ) = Ψ(Y ) for Y ∈ [0, R],

where R =
Rp
H

is the dimensionless pipe radius; 8β2 = ReSt, where Re is the

Reynolds number, Re =
ρBH

µ0
and St is the Strouhal number, St =

H

Bτ
;

Cu =
λB

H
≥ 0 is the Carreau number (Weissenberg number) [2]; c ∈ [0, 1) is the

viscosity ratio: c = 1− µ∞
µ0

; α > 0 and n ∈ R are empirically determined con-

stants. We suppose that Ψ(Y ) ∈ C4([0, R]) satisfies the compatibility conditions,

(2.4) Ψ′(0) = Ψ(R) = 0 Ψ′(R) = 0, Ψ′′(R)− f(0) = 0
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and

f(T ) ∈ C2([0,∞)), |f(T )| ≤ f0,
∣∣f ′(T )

∣∣ ≤ f1 for T ≥ 0,(2.5)

f(T ) 6≡ 0, f0, f1 are positive constants.

For the function

Φ(η) = (1− n) (1 + Cuαηα)
n−1−α

α + n (1 + Cuαηα)
n−1
α(2.6)

= (1 + nCuαηα) (1 + Cuαηα)
n−1−α

α for η ≥ 0 ,

eq. (2.2) in non-divergent form is

(2.7) P0U = 8β2UT − [1− c+ cΦ(| UY |)]UY Y

− 1

Y

[
1− c+ c (1 + Cuα | UY |α)

n−1
α

]
UY = f(T ) in Q .

The eq. (2.2) is not uniformly parabolic for c = 1 and the problem (2.2) – (2.5) has
not a global classical solution for T ∈ [0,∞) [12]. The type of eq. (2.7) is different
for different values of n and Cu, when α > 0. More precisely [10]:

for n > 1, Cu 6= 0, c ∈ (0, 1) ,(2.8)

eq. (2.7) is singular, strictly nonuniformly parabolic equation, because

0 < 1− c ≤ 1− c+ cΦ(η) ≤ 1− c+ cn (1 + Cuαηα)
n−1
α ;

for n ∈ [0, 1], Cu > 0, c ∈ (0, 1) or n ∈ R, Cu = 0, c ∈ (0, 1)(2.9)

or n ∈ R, Cu ≥ 0, c = 0 ,

eq. (2.7) is singular, uniformly parabolic equation, because

1− c+ cΦ(η) ≡ 1 for Cu = 0 or c = 0,

while 0 < 1− c ≤ 1− c+ cΦ(η) ≤ 1− c+ c (1 + nCuαηα)

× (1 + Cuαηα)
n−1−α

α ≤ 1− c+ cn ≤ 1

for n ∈ [0, 1], Cu ≥ 0, c ∈ (0, 1) and every η ≥ 0;

for n < 0, Cu 6= 0, c ∈ (0, 1) and(2.10)

(2.10a) α

(
1− α+ 1

n

)n−1
α

≤ 1− c
c
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eq. (2.7) is singular, degenerate parabolic equation, because

0 ≤ 1− c+ αc

(
1− α+ 1

n

)n−1
α

≤ 1− c+ cΦ(η) ≤ 1 for η ≥ 0;

or

(2.10b) α

(
1− α+ 1

n

)n−1−α
α

>
1− c
c

eq. (2.7) is singular, degenerate parabolic equation for η ∈ [0, η1] ∪ [η2,∞) and
singular, backward parabolic one for η ∈ (η1, η2).

Here 0 < η1 < η2 <∞ are the roots of the equation

(2.11) h(η) = 1− c+ cΦ(η).

In order to prove the classical solvability of the problem (2.2)–(2.5), we regular-
ized equation (2.2), and hence equation (2.7), with a small positive parameter ε ∈
[0, ε0], ε0 � R, i.e.

Pε(U
ε) = 8β2U εT − [1− c+ cΦ (| U εY |)]U εY Y(2.12)

− 1

Y + ε

[
1− c+ c (1 + Cuα | U εY |α)

n−1
α

]
U εY = f(T ) in Q ,

U εY (T, 0) =U ε(T,R)=0 for T ≥ 0 , U ε(0, Y )=Ψ(Y ) for Y ∈ [0, R]

and ε ∈ (0, ε0], ε0 � R .

Further on, we will prove apriori estimates for U εY (T, Y ) and its derivatives for every
ε ∈ (0, ε0] at ε0 � R with constants independent of ε. Thus after the limit ε→ 0, we
get the solvability of the problem (2.2)–(2.5). For this purpose we need the following
results for the steady Poiseuille flow of Carreau-Yasuda fluid given in [11], i.e.

LV ε =
1

Y + ε

∂

∂Y

{[
1− c+ c (1 + Cuα | V ε

Y |α)
n−1
α

]
(Y + ε)V ε

Y

}
(2.13)

= [1− c+ cΦ (| V ε
Y |)]V ε

Y Y −
1

Y + ε

[
1− c+ c (1 + Cuα | V ε

Y |α)
n−1
α

]
V ε
Y = f0.

Theorem 2.1. Suppose α > 0, Cu > 0, c ∈ (0, 1), n < 0. The problem (2.13) has a
unique classical solution V ε(Y ) ∈ C2([0, R]) if:

(2.14)
(

1− α+ 1

n

)n−1−α
α

<
1− c
αc

;
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or (
1− α+ 1

n

)n−1−α
α

=
1− c
αc

and[
1− c+ c

(
1− α+ 1

n

)n−1
α

]
Cu−1

(
−α+ 1

n

) 1
α

<
f0(R+ ε)

2
;(2.15)

or (
1− α+ 1

n

)n−1−α
α

>
1− c
αc

and

f0(R+ ε)

2
<
[
1− c+ c (1 + Cuαηα)

n−1
α

]
η1,(2.16)

where η1 is the first positive root of (2.11). Moreover,

(2.17) V ε(Y ) = −
∫ R

Y
F−1

(
f0(s+ ε0)

2

)
ds satisfies the estimate

(2.18) 0 ≤ V ε
Y (Y ) ≤ F−1

(
f0(R+ ε0)

2

)
for Y ∈ [0, R], ε ∈ (0, ε0)

and F−1(ζ) is the inverse function of

(2.19) F (ζ) =
[
1− c+ c (1 + Cuαηα)

n−1
α

]
ζ for ζ ≥ 0.

The proof of Theorem 2.1 is identical with the proof of the Theorems 2 – 4 in [11]
and will be omitted here.

3 APRIORI ESTIMATES FOR U εY (T, Y )

In this section we prove apriori estimates for the solution U εY (T, Y ) of (2.12), (2.4)
and for their derivatives with constants independent of ε.

Lemma 3.1. Suppose U εY (T, Y ) ∈ C2(Q) ∩ C1(Q) is a solution of (2.12), (2.4),
α > 0, c ∈ [0, 1) and one of the conditions (2.8) or (2.9) holds. Then the estimates

(3.1) |U ε(T, Y )| ≤ K1

(
R2 − Y 2

)
≤ K1R

2,

(3.2) |U εY (T,R)| ≤ 2K1R

are satisfied for T ≥ 0, Y ∈ [0, R], where

(3.3) K1 = max

{
| Ψ(Y ) |
R2 − Y 2

,
f0

2(1− c)

}
.
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Proof. The operator

(3.4) PW = 8β2WT − [1− c+ cΦ(| U εY |)]WY Y

− 1

Y + ε

[
1− c+ c (1 + Cuα | U εY |α)

n−1
α

]
WY

is strictly parabolic one under conditions (2.8) or (2.9). For the function H(T, Y ) =
K1(R

2 − Y 2) we get from (2.8) or (2.9) and (3.3) the estimate

PH = 2K1 [1− c+ cΦ (| U εY |)] +
2K1Y

Y + ε

[
1− c+ c (1 + Cuα | U εY |α)

n−1
α

]
≥ 2K1(1− c) ≥ f0 ≥ f(T ) = PU ε for (T, Y ) ∈ Q.

Since H(0, Y )−U ε(0, Y ) = K1(R
2−Y 2)−Ψ(Y ) ≥ 0 for Y ∈ [0, R], H(T,R)−

U ε(T,R) = 0 and HY (T, 0)−U εY (T, 0) = 0 for T ≥ 0, from the interior and strong
maximum principle (see [13], [14]), it follows that H(T, Y ) ≥ U ε(T, Y ) for T ≥ 0,
Y ∈ [0, R]. The estimate from below for U ε(T, Y ) holds by means of the auxiliary
function −H(T, Y ) and (3.1) is proved.

The estimate (3.2) follows trivially from (3.1).

Lemma 3.2. Suppose U εY (T, Y ) ∈ C2(Q) is a solution of (2.12), (2.4), α > 0,
Cu > 0, c ∈ (0, 1),

(3.5) | Ψ(Y ) |< −V 0(Y ) for Y ∈ [0, R],

where V 0(Y ) is defined in Theorem 2.1 for ε = 0 and one of the conditions (2.8) or
(2.9) holds. Then the estimates

| U ε(T, Y ) |≤ (R− Y )F−1
(f0(R+ ε0)

2

)
,(3.6)

| U εY (T,R) |≤ F−1
(f0(R+ ε0)

2

)
(3.7)

are satisfied for T ≥ 0, Y ∈ [0, R], ε ∈ [0, ε0] and the function F is defined in (2.19).

Proof. For the function V ε
Y (T, Y ) defined in Theorem 2.1, simple computations give

us

PV ε =− f0 − cV ε
Y Y [Φ(| U εY |)− Φ(| V ε

Y |)](3.8)

− c

Y + ε

[
(1 + Cuα | U εY |α)

n−1
α − (1 + Cuα | V ε

Y |α)
n−1
α

]
V ε
Y

=− f0 − cA1

[
(U εY )2 − (V ε

Y )2
]
,



238 Unsteady Poiseuille Flow

where

A1 =
1

2
Cuα

∫ 1

0

[
θ(U εY )2 + (1− θ)(V ε

Y )2
]α−2

2 dθ
{
n(n− 1)

(
U εY Y +

U εY
Y + ε

)
×
∫ 1

0
[τ (1 + Cuα | U εY |α) + (1− τ) (1 + Cuα | V ε

Y |α)]
n−1−α

α dτ

+ V ε
Y Y (1− n)(n− 1− α)

∫ 1

0
[τ (1 + Cuα | U εY |α)

+ (1− τ) (1 + Cuα | V ε
Y |α)]

n−1−2α
α dτ

}
,

The function Zε(T, Y ) = U ε(T, Y ) + V ε(T, Y ) satisfies the problem

PZε(T, Y )− cA1 (U εY − V ε
Y )ZεY = −f0 + f(T ) ≤ 0 in Q(3.9)

ZεY (T, 0) = Zε(T,R) = 0 for T ≥ 0,

and Zε(0, Y ) = Ψ(Y ) + V ε(Y ) ≤ 0 for Y ∈ [0, R].

From the interior and strong maximum principle it follows that Zε(T, Y ) has no
positive maximum in Q, i.e., Zε(T, Y ) ≤ 0 and hence U ε(T, Y ) ≤ −V ε(T, Y ) for
T ≥ 0, Y ∈ [0, R]. In the same way the function Zε1(T, Y ) = U ε(T, Y )− V ε(T, Y )
has no negative minimum in Q, i.e., Zε1(T, Y ) ≥ 0 and hence U ε(T, Y ) ≥ V ε(T, Y )
for T ≥ 0, Y ∈ [0, R]. Then | U ε(T, Y ) |≤ −V ε(T, Y ).

The estimate (3.6) follows from (2.17) and the monotonicity of F−1(ζ), while
(3.7) is a trivial consequence of (3.6).

Lemma 3.3. Suppose U εY (T, Y ) ∈ C3(Q) ∩ C2(Q) is a solution of (2.12), (2.4),
α > 0. If:

(i) c ∈ [0, 1) and (2.8) or (2.9) holds;
or

(ii) c ∈ (0, 1), Cu > 0, n < 0, (3.5) and one of the conditions (2.14), or (2.15)
or (2.16) with

(3.10) sup
Y ∈[0,R]

| Ψ′(Y ) |< η1

is satisfied, then the estimate

(3.11) | U εY (T, Y ) |≤ K2 for T ≥ 0, Y ∈ [0, R], ε ∈ (0, ε0) holds

where

K2 = max
{

2K1R, sup
Y ∈[0,R]

| Ψ′(Y ) |
}

in case (i) and
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K2 = max
{
F−1

(
f0(R+ ε0)

2

)
, sup
Y ∈[0,R]

| Ψ′(Y ) |
}

in case (ii).

Proof. Differentiating (2.12) with respect to Y we get that Zε(T, Y ) = U εY (T, Y )
satisfies the problem

RZε = 0 in Q, Zε(0, Y ) = Ψ′(Y ) for Y ∈ [0, R](3.12)

Zε(T, 0) = 0 for T ≥ 0,

where

RW = 8β2WT − [1− c+ cΦ(|U εY |)]WY Y −A2WY(3.13)

+
1

(Y + ε)2

[
1− c+ c (1 + Cuα | U εY |α)

n−1
α

]
W, in Q ,

A2 = (n− 1)CuαU εY Y U
ε
Y | U εY |α−2

[
(α+ 1 + nCuα | U εY |α)U εY Y(3.14)

+
1

Y + ε
(1 + Cuα | U εY |α)

]
(1 + Cuα | U εY |α)

n−1−2α
α .

From the interior and the strong maximum principle, Zε(T, Y ) attains its positive
maximum and negative minimum in the part of the parabolic boundary, i.e., on Γ1 ∪
Γ2, where Γ1 = {(0, Y ), Y ∈ [0, R]} and Γ2 = {(T,R), T ≥ 0}. The estimate
(3.11) follows from the choice of K2 and (3.2) in the case (i) and (3.7) in the case
(ii).

Lemma 3.4. Suppose U εY (T, Y ) ∈ C3(Q) ∩ C2(Q) is a solution of (2.12), (2.4).
Under the assumptions of Lemma 3.3 the estimate

(3.15) | U εT (T, Y ) |≤ K3 exp(T ) for T ≥ 0, Y ∈ [0, R] holds

where

(3.16) K3 = max
{

sup
T≥0
| f ′(T ) |, 1

8β2

[
sup

Y ∈[0,R]
|[1− c+ cΦ(| Ψ′(Y ) |α)]Ψ′′(Y )|

+ sup
Y ∈[0,R]

∣∣∣[1− c+ c(1 + Cuα | Ψ′(Y ) |α)
n−1
α

] | Ψ′(Y ) |
Y

]∣∣∣}.
Proof. The function Zε(T, Y ) = U εT (T, Y ) is a solution of the problem

(3.17) R1Z
ε = f ′(T ) in Q, ZεY (T, 0) = 0, Zε(T,R) = 0 for T ≥ 0,
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Zε(0, Y ) =
1

8β2

{(
1− c+ cΦ(| Ψ′(Y ) |α

)
Ψ′′(Y )

+
1

Y + ε

[
1− c+ c

(
1 + Cuα | Ψ′(Y ) |α

)n−1
α

]
Ψ′(Y )

}
for Y ∈ [0, R],

where

R1W = 8β2WT − [1− c+ cΦ(|U εY |)]WY Y −A3WY(3.18)

and

A3 = (n− 1)CuαU εY | U εY |α−2
[
α+ 1 + nCuα | U εY |α(3.19)

+
1

Y + ε
(1 + Cuα | U εY |α)

]
(1 + Cuα | U εY |α)

n−1−2α
α .

Hence the function Zε1(T, Y ) = U εT (T, Y )−K3 exp(T ) satisfies the problem

R1Z
ε
1 = f ′(T )− 8β2K3 exp(T ) ≤ 0 in Q ,(3.20)

(Zε1)Y (T, 0) = 0, Zε1(T,R) = −K3 exp(T ) ≤ 0 for T ≥ 0,(3.21)

and Zε1(0, Y ) = Zε(0, Y )−K3 ≤ 0 for Y ∈ [0, R]

from the choice of K3.
From lemma 3.3 the estimate (3.11) holds and the equation (3.18) is parabolic

one. The estimate U εT (T, Y ) ≤ K3 exp(T ) follows from the interior and the strong
boundary maximum principle and eq. (3.21). By means of the function Zε(T, Y ) +
K3 exp(T ), in the same way, the opposite inequality U εT (T, Y ) ≥ −K3 exp(T )
holds, which proves (3.15).

Lemma 3.5. Under the assumptions of Lemma 3.3 the estimate[
1− c+ c(1 + Cuα | U εY |α)

]n−1
α | U εY (T, Y ) |≤ K4(Y + ε)(3.22)

holds for T ≥ 0, Y ∈ [0, R], where

K4 = 4β2K3 exp(T ) +
1

2
f0 .(3.23)

Proof. Integrating the regularized equation (2.2), i.e.,

PεU
ε =8β2U εT−

1

Y +ε

∂

∂Y

{[
1−c+c (1+Cuα | U εY |α)

n−1
α

]
(Y +ε)U εY

}
(3.24)

=f(T )
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from 0 to Y ∈ (0, R] we get the estimate∣∣∣(Y + ε) [1− c+ c(1 + Cuα | U εY |α)]
n−1
α U εY (T, Y )

∣∣∣
=
∣∣∣ ∫ Y

0
(s+ ε)

[
8β2U εT (T, s)− f(T )

]
ds
∣∣∣ ≤ 1

2

[
8β2K3 exp(T ) + f0

]
(Y + ε)2,

which proves (3.22).

Lemma 3.6. Under the assumptions of Lemma 3.3 we obtain the estimate

(3.25) | U εY Y (T, Y ) |≤ K5 for T ≥ 0, Y ∈ [0, R], where

(3.26) K5 =
[
8β2K3 exp(T ) +K4 + f0

]
[1− c+ cΦ(K2)]

−1 .

Proof. The estimate (3.25) follows from (2.2), (3.11), (3.15), (3.22).

Lemma 3.7. Under the assumptions of Lemma 3.3 the estimates

(3.27)
∣∣∣∣ ∂γ∂Y ∂µ

∂T
U ε(T, Y )

∣∣∣∣ ≤ K6 exp(T ),

hold for 1 ≤ γ + µ ≤ 3, T ≥ 0, Y ∈ [δ,R], 0 < δ < R, where the constant K6 is
independent of ε.

Proof. The proof of (3.27) follows from the Schauder estimates [15], [14] for the
equation (2.2) and Lemmas 3.1– 3.6.

Theorem 3.1. Suppose α > 0. If
(i) c ∈ [0, 1) and (2.8) or (2.9) hold;

or
(ii) c ∈ (0, 1), Cu > 0, n < 0, (3.5) and one of the conditions (2.14), or (2.15),

or (2.16) together with (3.10) is satisfied.
Then the problem (2.2) - (2.5) has a unique classical solutionU(T, Y ) ∈ C2(Q0)∩

C1(Q0), Q0 =
{

(T, Y );T ∈ (0, T0), Y ∈ (0, R)
}

for every T0 <∞.

Proof. From Lemma 3.3 the equation (2.12) is uniformly parabolic in Q. By means
of the continuity on the parameter κ ∈ [0, 1] of the problem

(3.28) Sκ(U ε) = κPε(U
ε) + (1− κ)

[
8β2U εT − U εY Y

]
= f(T ) in Q

with boundary conditions given in (2.12) and Schauder apriori estimates [15], [14], it
follows that the problem (2.12) has a unique classical solution U ε(T, Y ) ∈ C3(Q) ∩
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C2(Q). Indeed the set Ω =
{
κ ∈ [0, 1]

}
, for which (3.28) has a classical solution is

a relatively open set from the theory of the inverse functions and closed set from the
apriori estimates in Lemmas 3.1-3.7. Hence Ω ≡ [0, 1] and from the solvability of
(3.28) for κ = 0, it follows its solvability for κ = 1.

From Lemma 3.7 the sequence in ε of

{U ε(T, Y )}, {U εY (T, Y )}, {U εT (T, Y )}, {U εY Y (T, Y )} for ε ∈ (0, ε0]

is equicontinuous and uniformly bounded for T ∈ [0, T0], Y ∈ [δ,R], 0 < δ < R.
Moreover, {U ε(T, Y )}, {U εY (T, Y )} are equicontinuous and uniformly bounded
in Q0 with constant independent of ε. By means of the Arzela-Ascoli theorem [16]
and diagonalization argument there exists a subsequence {U εi(T, Y )}, εi → 0,
which converges to the desired solution of (2.2) - (2.5) for εi → 0.
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