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ABSTRACT: We consider rotationally driven nonlinear viscoelastic jet. In
contrast to previous unrealistic planar studies with no gravity effect, we inves-
tigate here realistic three-dimensional jet with gravity effect. Using theoretical
and computational methods, we develop models for such jet and its stability
and determine the solutions. We find three-dimensional jet with gravity effect
leads to faster and thinner jet. For jet arc length higher than its exit diameter,
our calculation with typical parameter values shows that jet radius is smaller
by a factor of more than 1.4 and jet speed is higher by factor of more than 2
as are compared to the exact planar jet counterpart results. Our linear stability
of such jet uncovers new instability of the most critical three-dimensional spa-
tiotemporal disturbance that grows in time very close to the three-dimensional
jet exit but decays in space and can become stable for sufficiently far away
from jet exit.

KEY WORDS: viscoelastic jet; rotating jet; gravity force; three-dimensional
jet; jet stability.

1 INTRODUCTION

In the last two decades there have been a number of studies of the dynamics of the
rotationally driven jet flows [1–15] for either inviscid, Newtonian viscous or non-
Newtonian fluid flow cases. An essential and relevant assumption for the theoretical
investigations has been the so-called slender jet theory, where as in the experimen-
tal observation and the technological applications the aspect ratio for the fiber jet is
considered to be sufficiently small.

Authors in [1] carried out theoretical modeling and computation of an inviscid
jet that was generated by a rotating drum. They included effects of both gravity and
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surface tension, and their investigation was based on the asymptotic and numerical
techniques. For their steady solution, they calculated only the jet centerline for dif-
ferent values of the parameters. They found that the effect of gravity was to push
down the centerline of the inviscid jet in the downward direction.

Authors in [2] studied a model for an inviscid thin liquid jet that was generated
by a rotating orifice and was under a restricted two-dimensional condition that the
jet centerline was in a fixed horizontal plane. The authors included effect of surface
tension, but the effect of gravity was neglected. They determined, in particular, the
trajectory of the jet and calculated the linear stability of the inviscid jet and found
that such jet is unstable. Modeling and computation of a restricted two-dimensional
inviscid rotating jet was done in [7]. The authors’ modeling system was a simpli-
fied model of a centrifugal spinning system for the production of fiber jet that was
developed experimentally [6] and was referred to as forcespinning process. In such
a process a fluid jet is forced through an orifice of a rotating spinneret that leads to
the formation of a jet with curved centerline. The authors solved numerically their
inviscid modeling system, and they calculated, in particular, fiber jet radius versus
arc length and for different values of the parameters that represented effects due to
the rotation and surface tension. Their results indicated that jet radius was decreased
with increasing the rotation rate. A model of two-dimensional steady rotating curved
jet was studied in [13]. The authors carried out temporal stability of such jet and
found it is unstable.

Authors in [10] used high speed photography to gain some understanding on the
mechanisms involved for the production of fiber jets through the forcespinning pro-
cess. They also determined the effects of some controllable parameters such as, in
particular, angular velocity of the rotating spinneret and viscosity effect of the poly-
meric solution, which was a weight percentage of PEO (Polyethylene oxide) concen-
tration in water, on the fiber jet speed and the jet diameter. The authors observed
in their experimental fiber jet formation presence of a traveling wave disturbances,
which may have been stabilized by presence fluid container, and they also acknowl-
edged that the presence of the gravity force contributed some effects on their experi-
mental results.

Author in [14] investigated two-dimensional rotating viscoelastic jet during force-
spinning process and used the Giesekus constitutive equations [15–17] for the stress
tensor in the governing equations for the jet system. He then applied scaling and per-
turbation techniques to determine a relatively simple system for the jet that was under
restricted two-dimensional condition as in [2] and [13]. He calculated the steady so-
lutions for the two-dimensional jet quantities and in the absence of the gravity effect.
He found, in particular, that the jet speed, tensile force and stretching rate increase,
while the fiber jet radius decreases, with increasing the rotation rate, the viscoelastic
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effect and the arc length distance from the jet exit. Author in [15] carried out stability
of two-dimensional steady solution of the rotating viscoelastic jet [14] with respect to
infinitesimal two-dimensional disturbances whose wave numbers were assumed con-
stants, and they could grow in time, space or simultaneously in time and space. He
presented instability results due to the critical disturbance with constant wave num-
ber that was imposed on the two-dimensional jet. Author in [18] studied nonlinear
rotating jets of viscoelastic Boger fluids during forcespinning process. The author
described and used upper-convected Maxwell model for the viscoelastic aspect of the
governing system of equations and the boundary conditions that were solved for the
parameter regimes that were relevant to Boger fluids cases. The steady solutions for
different jet quantities like stretching force, curvature and compressive force were
determined.

In the present study and in contrast to the previous restricted and unrealistic two-
dimensional work [14, 15], we consider realistic three-dimensional form of the non-
linear rotating viscoelastic fiber jet that includes effect of gravity force and with no
restriction on the jet centerline in the three-dimensional space. Our jet system takes
into account the upper-convected Maxwell model that was used before [18] in the
author’s modeling of nonlinear viscoelastic jet during electospinning. We first deter-
mine steady solutions of the jet quantities versus arc length and for different values of
the parameters. In contrast to the planar case [14], we find that the three dimension-
ality of the jet system and presence of gravity force amplify resultant force that drive
the jet leading to thinner and higher jet speed as well as enhancing the tensile force
and more so with increasing the arc length, rotational forces and relaxation time.

As were given both briefly in the abstract part and with more details in para-
graphs in Sections 3 and 5, our find that the values of three-dimensional jet quantities
such as jet radius and speed that are lower and higher, respectively, as compare to
the same planar jet counterpart cases. This is a consequence of the more complete
three-dimensional jet system that includes, in particular, more complete forms of vis-
coelasticity, rotational and gravity forces, which implied modeling three-dimensional
jet system in more efficient for using in applications and in predicting experimental
predictions of the results.

Next, we study linear stability of such jet with respect to both two- and three-
dimensional travelling wave disturbances that may grow in time, space, or simulta-
neously in time and space. In contrast to the restricted planar steady flow and planar
disturbances with constant wave numbers [15], we detect presence of the most critical
disturbances to be in three-dimension with jet arc length dependence of their wave
numbers. The instabilities due to such temporal or spatial disturbances decay to zero
in time or space, respectively. However, new three-dimensional spatiotemporal insta-
bility due to some critical disturbance is discovered that grows in time for region very
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close to the three-dimensional jet exit but decays in space and can become negligibly
small and decays to zero for sufficiently far distance from the jet exit section in a time
interval that can allow for the linear stability analysis to be valid. Such instability is
distinct in the sense that its growth rate, wave number and wave speed are dependent
on the three-dimensional jet centerline arc length, and these quantities increase wit
the arc length.

2 GOVERNING MODELING SYSTEM

Our present modeling is initially based on the original three-dimensional governing
equations for the momentum and mass conservation [19] in a rotating coordinate
system that is attached and embedded on a rotating spinneret (Fig. 1) for a rotating
system such as that of the force-spinning [7, 10]. As in the force-spinning process,
the produced fibers are curved due to the rotational forces (centrifugal and Coriolis
forces).
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                              Figure 1.Rotating spinneret and coordinate system.  
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Fig. 1: Rotating spinneret and coordinate system.

The governing equations for mass continuity and momentum for the viscoelas-
tic jets in the rotating frame, where here the stress tensor T is based on the upper-
convected Maxwell [18, 19], are given below:

∇ · u = 0 ,(1a)
∂u

∂t
+ u · ∇u = −1

ρ
∇P +

1

ρ
∇ ·T− ω × (ω × r)− 2ω × u + g ,(1b)

T = τττ + ηs(∇u +∇uT ) ,(1c)

λ
∂τττ

∂t
+ τττ + λ(u · ∇τττ −∇uT · τττ − τττ · ∇u) = ηp(∇uT +∇u) ,(1d)
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where u is the relative velocity vector of the fiber jet, P is the pressure, T is the
stress tensor, ρ is the density of the melt or solution, g is the force of gravity per
unit mass, t is the time variable, ω is the angular velocity vector with magnitude Ω
of the rotating spinneret whose orifice emits fiber jet from the melt or solution in the
fluid container [7, 10], r is a position vector of a point on the fiber, ηp and ηs are the
viscosities of the polymer and solvent, respectively and λ is the relaxation time. We
consider a Cartesian coordinate system (X , Y , Z) which is attached to the rotating
spinneret (Fig. 1). This coordinate system is fixed relative to the rotating spinneret.
In contrast to the previous two-dimensional studies [2, 14], where the jet centerline
was restricted to be a fixed horizontal plane and gravity effect was totally neglected,
we consider a three-dimensional model, where there is no such restriction, and also
includes the force of gravity, and the fiber jet’s arc length condition that needs to be
satisfied here is given below:

(1e)
(∂X
∂s

)2
+
(∂Y
∂s

)2
+
(∂Z
∂s

)2
= 1 ,

where s is the arc length along the jet’s centerline. Thus, it is designated that the
components of a position vector of a point on the jet’s centerline with respect to the
rotating Cartesian coordinate (X , Y , Z) system are X, Y and Z, respectively.

The governing equations (1a)–(1e) are subjected to the relevant boundary condi-
tions for the jet. At the free surface of the jet, the kinematic and dynamic boundary
conditions [19] are

∂β

∂t
+ u · ∇β = 0 , β ≡ n−R(s, ϕ, t) ,(1f)

(T− P I) · n = −σκn ,(1g)

where n and ϕ are the radial variable and the azimuthal angle, respectively, represent-
ing the variables of the polar coordinate in a plane perpendicular to the centerline of
the jet, n is a unit normal vector perpendicular to the jet’s surface boundary pointing
out of the jet, I is a unitary matrix, R is the radius of the jet, σ is surface tension,
and κ ≡ ∇ · n is twice mean curvature of the jet boundary. Similar to the earlier
treatment [2, 14, 18], we presented these boundary conditions (1f)–(1g) in terms of
independent variables of a local orthogonal curvilinear coordinates (s, n, ϕ). In ad-
dition, the following main boundary conditions at the orifice where jet exits need to
be satisfied

(1h) X = Y = Z =
∂Y

∂s
=
∂Z

∂s
= 0 ,

∂X

∂s
= 1 , u = U , R = ro at s = 0 ,

where U is the centerline velocity of the jet at the exit section and ro is the radius of
the orifice at the jet exit section.
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We non-dimensionalize the governing system (1a)–(1h) in the orthogonal coor-
dinate system (s, n, ϕ) that was described before by using scaling U for velocity
vector u = (u, v, w), ρU2 for pressure, ro for n and R, C for s and (X , Y , Z), C/U
for t and (ηs + ηp)U/r0 for the stress tensor, where C is half of length of the spin-
neret. For simplicity of notation we express the resulting non-dimensional variables
in the governing system in terms of the same original symbols. The non-dimensional
form of the stated system will contain non-dimensional parameters Rossby number
Rb = U /(ΩC) representing the rotational parameter, Froude number F = U /(Cg)0.5

representing the gravity parameter, Weber number We = ρU2ro/σ representing the
surface tension parameter, Reynolds number Re = ρUC/(ηs + ηp) representing the
viscosity parameter, Deborah number De = λU/C representing the viscoelastic pa-
rameter, viscosity ratio η = ηp/(ηs + ηp) for the polymer and solvent viscosities and
a small aspect ratio parameter ε = ro/C (ε � 1), where g is acceleration due to
gravity and λ is the relaxation time.

Similar to the previous studies [2, 14, 18], the present dimensionless system that
contains ε, is under the relevant assumption that the fiber jet is a long and slender
object, so that ε is considered a very small parameter (ε� 1) for an scaling analysis
that we consider with the following related expansions for the dependent variables:

(u, v, w) = [u0(s, t) + εnu1(sϕ, t) + · · · , εnv1(s, ϕ, t) + · · · ,(2a)

εnw1(s, ϕ, t) + · · · ],
(P,R) = [P0(st) + εnP1(s, ϕ, t) + · · · , R0(s, t) + εR1(s, ϕ, t) + · · · ],(2b)

(X,Y, Z) = [X0(s, t) + εX1(s, t) + · · · , Y0(s, t) + εY1(s, t) + · · · ,(2c)

Z0(s, t) + εZ1(s, t) + · · · ],
τij =τ0ij(s)δij + εnτ1ij(s, ϕ) + · · · ,(2d)

where subscripts “ij” for τij in (2d) indicate that normal stress components along s
and n directions, respectively, are for i = j = 1 and 2, while tangential components
of the stress tensor correspond to the case where i 6= j. Also δij defined to be equal
1 if i = j and 0 if i 6= j.

Our scaling analysis then makes use of the above expansions in the governing sys-
tem, where the scaling factor ε is used to scale the variables properly in the governing
system. The governing systems are then simplified and only the leading order terms
in (1a)–(1e) are retained and further simplifications are made to have a final system
only for u0, R0, X0, Y0 and Z0. Dropping the subscripts for simplicity of notations,
the resulting simplified form of the modeling system is given below:
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∂u

∂t
+ u
[
E8

∂

∂t

∂X

∂s
+ E9

∂

∂t

∂Y

∂s
+ E10

∂

∂t

∂Z

∂s

]
+ u

∂u

∂s
(3a)

=
1

WeR2

∂R

∂s
− E9

F2 +
2u

Rb

[
E8
∂Z

∂s
− E10

∂X

∂s

]
+

1

Rb2
[E8(X+1)+E10Z]

+
1− η

Re

[ 6

R

∂R

∂s

∂u

∂s
+ 2

∂2u

∂s2

]
+

1

ReR2

∂

∂s
[R2(τ11 − τ22)],

∂R

∂t
+ u

∂R

∂s
= −R

2

∂u

∂s
,(3b)

E0u
∂

∂s

{ 1

E0

[∂X
∂s

∂3X

∂s3
+
∂Y

∂s

∂3Y

∂s3
+
∂Z

∂s

∂3Z

∂s3

]}
(3c)

=
3

2

∂u

∂s

[∂X
∂s

∂3X

∂s3
+
∂Y

∂s

∂3Y

∂s3
+
∂Z

∂s

∂3Z

∂s3

]
,

−u
[
E11

∂

∂t

∂X

∂s
− E12

∂

∂t

∂Y

∂s
+ E13

∂

∂t

∂Z

∂s

]
+
[
− u2 +

1

WeR

]
E0

(3d)

− u

Rb

[
E11

∂Z

∂s
− E13

∂X

∂s

]
+
E12

F2 +
1

Rb2
[E11(X + 1)− E13Z]

+
1

Re

[
2
∂

∂s
(uE0) +

E0

6

∂u

∂s
− u

3

∂E0

∂s

]
= 0,(∂X

∂s

)2
+
(∂Y
∂s

)2
+
(∂Z
∂s

)2
= 1 ,(3e)

τ11 + De
[∂τ11
∂t

+ u
∂τ11
∂s
− 2τ11

∂u

∂s
+
µ

η
τ211

]
= 2η

∂u

∂s
,(3f)

τ22 + De
[∂τ22
∂t

+ u
∂τ22
∂s

+ τ22
∂u

∂s
+
µ

η
τ222

]
= −η∂u

∂s
,(3g)

where the expressions for E0 – E13 are of the form given in [18] and are not given
here.

The boundary conditions are given by

X = Y = Z =
∂Y

∂s
=
∂Z

∂s
= u− 1 = R− 1 =

∂X

∂s
− 1 = 0 at s = 0(4a)

τ11 − 2η
∂u

∂s
= τ22 + η

∂u

∂s
= 0 at s = 0 ,(4b)

where the stress conditions in (4b) are of the form as given in [18].

3 STEADY SOLUTIONS AND RESULTS

The asymptotic form of the steady solution for small s and the corresponding results
for the dependent variables, which were found to be useful as initial conditions for
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 4c1/Rb +a1
2+2a2+(a2-0.25a1

2)/We+4c1/Rb +[(1-η)/Re](12a1 a2 -1.5a1
3)=(3η/Re)(a1

2 -4 a1  
a2 ) =(1/Rb)2,                                                                                  (5h) 
          d1 -4η(1-µ)a1

2 =d2 –(2a2 η-d1 /2)/De - a1(-2µ d1 +0.5 d1 +4 a2η)=0,                      (5i) 
                   e1 + η(1-µ)a1

2= e2+(a2η+e1/2)/De+ a1(e1–a2η-µ e1)=0.                                  (5j) 
   
The asymptotic results given by (5a)-(5j) are also useful for our numerical solutions of full steady 
solutions of (3a)-(3t) and (4a)-(4b), which are described below.     

We solved the nonlinear steady system (3a)-(3t) and (4a)-(4b) numerically by treating it 
as an initial value problem with independent variable s using a efficient Runge-Kutta scheme of 
fourth order [21]. Since the viscous stress terms in this system contains second derivative for u 
and third derivatives for  X , Y and Z, we made use of the asymptotic solutions given in (5a)-(5l)  
to find some needed boundary conditions at s=0. We then obtained the numerical solution for the 
described initial value problem, and we generated data for the jet quantities for different values of 
the parameters.  

Figure 2 presents jet speed versus arc length for We =1.5, Re =1.0, F=4.0, De =1.0, η=0.1 
and three different values 1.0, 1.3 and 2.0 of the Rossby number. It can be seen from figure 2 that 
the effect of rotational forces is enhancing the jet in the sense that the jet speed increses with the 
rotation rate. Such enhancing effect of the rotation is also seen to be increased rapidly with 
increasing the arc length. Our additional generated data for higher values of the Deborah number 
and smaller index values indicated similar enhancing effect of the rotational forces. As compared 
with the corresponding results in the restricted two-dimensional case [14], the rate of increase of 
jet speed with respect to the rotation rate and the arc length in the present three-dimensional 
system was found to be notably higher than in the two-dimensional case. 

    
Figure 2. Jet speed versus arc length for We =1.5, Re =1.0,  De =1.0, η=0.1,   F=4.0 and 
three different values 1 (dashed line), 1.3 (dotted line) and 2.0 (solid line of the Rossby 
number. 
 
Figure 3 is the same as figure 2 but for tensile force [Tf =R2 (τ11 -τ22)] (Feng 2003) versus 

jet arc length. It can be seen from this figure that the tensile force increases significantly with 
increasing the rotation rate, and the tensile force and its arc length rate of change enhance notably 
with increasing the arc length for the value of the rotation rate beyond some value. Our additional 
generated data for the tensile force versus arc length  

Fig. 2: Jet speed versus arc length for We = 1.5, Re = 1.0, De = 1.0, η = 0.1,
F = 4.0 and three different values of Rossby number Rb = 1 (dashed line), 1.3
(dotted line) and 2.0 (solid line).

our numerical solutions of (3a)–(3g) and (4a)–(4b), are not given here but can be
found with further details in [18]. We solved the nonlinear steady system (3a)–(3g)
and (4a)–(4b) numerically by treating it as an initial value problem with independent
variable s using an efficient Runge-Kutta scheme of fourth order [21]. We obtained
the numerical solution for the described initial value problem, and we generated data
for the jet quantities with different values of the parameters.

Figure 2 presents jet speed versus arc length for We = 1.5, Re = 1.0, F = 4.0,
De = 1.0, η = 0.1 and different values of the Rossby number. It can be seen
from this figure that the effect of rotational forces enhancing the jet in the sense that
the jet speed increases with the rotation rate. and more rapidly with increasing the
arc length. Our additional generated data for higher values of the Deborah number
indicated similar enhancing effect of the rotational forces. As compared with the
corresponding results in the restricted two-dimensional case [14], the rate of increase
of jet speed with respect to the rotation rate and the arc length in the present three-
dimensional system was found to be notably higher than in the two-dimensional case.

Figure 3 is the same as Fig. 2 but for tensile force [Tf = R2 (τ11 − τ22)] [20]
versus arc length. It can be seen from this figure that the tensile force increases
significantly with increasing the rotation rate and its arc length rate of change enhance
notably with increasing the arc length for the value of the rotation rate beyond some
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Figure 3.The same as figure 2 but for tensile force versus arc length 

for given values of Rb, Re, We, η and De but for three different values of F indicated evidence for 
the enhancing effect due to gravity on the tensile force, which increases more with the arc length 
and the gravity effect. This also indicates importance effect of three-dimensionality of the jet with 
the presence of the gravity that need to be accounted for in any three-dimensional modeling since 
it can have notable effects that cannot be ignored.   

Figure 4 presents jet radius versus arc length for Rb =2.0, Re =1.0, F=4, We =1.5, η=0.1 
and different values of the Deborah number. It can be seen from figure that jet radius decreases 
with increasing the arc length and the viscoelastic effect, which indicates jet similar roles played 
by the relaxation time of the non-Newtonian fluid flow. It also shows that the jet radius decreases 
with increasing both the viscoelasticity and the arc length especially if the jet is not too close to 
its exit section. 

                              
                                                                                      
             
Figure 4. Jet radius versus s for Re =1.0, Rb =2.0, F=4.0, We =1.5, η=0.1 and different cases of De 
=15.0 (dashed line), 3.0 (dotted line) and 1.0 (solid line).  
 

 Our results also indicated that the jet radius in the present three-dimensional model is 
notably smaller as compare with those for the two-dimensional viscoelastic jet and the Newtonian 
jet cases. Thus, that the three-dimensionality of the jet system as well the non-Newtonian 
viscoelastic nature of the fiber jet are both enhancing the jet formation in the present jet flow.                
 
 
4.Linear stability analysis and results 

 We consider dependent variables for the three-dimensional jet flow that satisfy the 
system (3a)-(3f) and (4a)-(4b) to be sum of dependent variables for the steady jet flow solutions 
plus three-dimensional dependent variables for sufficiently small amplitude time-dependent 
disturbances in the form of travelling waves as were observed experimentally [10]. Thus, for the 

Fig. 3: The same as in Fig. 2 but for tensile force versus arc length.

value. Our additional generated data for the tensile force versus arc length for given
values of Rb, Re, We, η and De but for different values of F indicated evidence for
the enhancing effect due to gravity on the tensile force, which increases more with
the arc length and the gravity effect. This also indicates importance effect of three-
dimensionality of the jet with the presence of the gravity that need to be accounted
for.

Figure 4 presents jet radius versus arc length for Rb = 2.0, Re = 1.0, F =
4, We = 1.5, η = 0.1 and 2 different values of the Deborah number. It can be
seen from figure 4 that jet radius decreases with increasing the arc length and the
viscoelastic effect, which indicates similar roles played by the relaxation time of the
non-Newtonian fluid flow. It also shows that the jet radius decreases with increasing
both the viscoelasticity and the arc length especially if the jet is not too close to its
exit section.

Our results also indicated that the jet radius in the present three-dimensional
model is notably smaller as compare with those for the two-dimensional viscoelastic
jet and the Newtonian jet cases [7, 14]. Thus, three-dimensionality of the jet system
as well as presence of gravity force and the non-Newtonian viscoelastic nature of the
fiber jet are all enhancing the jet formation notably in the present jet flow.

For a more direct comparison of the results of the present three-dimensional jet
system and the counterpart for the planar jet system, we carried out calculations of
the jet quantities in the two systems for Re = 1.0, We = 1.3, Db = 1.0, Rb = 2.0,
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F = (4.0 for three-dimensional case;∞ for planar case) and η = 0.1. Table 1 below
provides results for discrete values of jet radius and speed versus arc length for both
systems.

It can be seen from Table 1 that jet for three-dimensional case begins to become
notably thinner than its two-dimensional analog for s ≥ 2.0 while jet speed for three-
dimensional case starts to become notably bigger that its two-dimensional analog for
s ≥ 2.0. These parameter values that were chosen in table 1 are considered typical
for the reasons thay are given as follow. Our additional calculations for different
parameter values indicated similar qualitative results. In addition our our further

Table 1: Values of jet radius and speed for different values of the arc length for
both three-dimensional jet (F = 4.0) and its two-dimensional analog (F = ∞) with
Re = 1, We = 1.3, Db = 1.0, Rb = 2.0 and η = 0.1

s 0.0 0.4 0.8 1.2 1.6 1.8 2.0 2.2 2.4

3D radius 1.000 0.962 0.918 0.858 0.761 0.694 0.609 0.494 0.306
2D radius 1.000 0.963 0.929 0.899 0.879 0.873 0.870 0.868 0.866
3D speed 1.000 1.082 1.187 1.359 1.725 2.075 2.694 4.097 10.676
2D speed 1.000 1.079 1.160 1.236 1.295 1.313 1.321 1.324 1.328
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studies of other jet quantities indicated that similar qualitative results with jet speed
were found for other jet quantities such as tensile force, stretching force and strain
rate. Thus, such results indicated that three-dimensionality of jet in the presence of
gravity force enhance the effectiveness of the jet, which is more in agreement with
experimental results [10] for the jet fiber and effectiveness of forcespinning process
to produce fiber.

We also find from the results given in table 1 that rate of increase and decrease
of three-dimensional jet speed and jet radius, respectively, with respect to arc length
increase and decrease with increasing the arc length and are significantly higher than
for the two-dimensional jet speed and radius counterpart. Our additional calculations
indicated that similar to the above results for three-dimensional jet speed and jet
radius their rate of increase and decrease, respectively, with respect to viscoelasticity,
rotational forces or gravity force are notably higher than for the two-dimensional jet
quantities counterpart.

4 LINEAR STABILITY ANALYSIS AND RESULTS

We consider dependent variables for the three-dimensional jet flow that satisfy the
system (3a)–(3g) and (4a)–(4b) to be sum of dependent variables for the steady jet
flow solutions plus three-dimensional corresponding dependent variables for suf-
ficiently small amplitude of time-dependent disturbances in the form of travelling
waves as were observed experimentally [10]. Thus, for the linear stability investiga-
tion of the steady state of the jet, we superimpose the three-dimensional disturbance
flow on the three-dimensional steady flow. In general, such disturbances can grow or
decay exponentially in time alone, grow or decay in space alone or simultaneously
grow or decay in both time and space.

Following [2] and the slender jet theory, where the ratio of the length scale of the
jet centerline to that for the jet radius is of order ε (ε� 1), we take into account pres-
ence of three-dimensional flow of small-amplitude disturbances that is superimposed
on the three-dimensional steady jet flow. We consider such disturbances in the form
of travelling waves whose dependent variables have the following expressions:

(5) (u′, R′, X ′, Y ′, Z ′, τ ′11, τ
′
22)

= [εu∗(s), R∗(s), ε3X∗(s), ε3Y ∗(s), ε3Z∗(s), τ∗1 (s), τ∗2 (s)]T,

T ≡ exp[k(s)s1 + λ(s)t1] .

Here s1 = s/ε, t1 = t/ε, k(s) = O(1) is complex growth rate in space, λ(s) = O(1)
is complex growth rate in time and quantities with superscript star are the s-dependent
coefficients of the disturbance variables. We, thus, use a multi-scale formulation of
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the type used before [2] and take into account disturbances with wavelengths of order
ε as needed.

We should note from (5) that we included ε and ε3 factors in the expressions for
the disturbance quantities u∗, X∗, Y ∗ and Z∗ as we found to be needed. Because if
we omit these factors, then it was found that the leading order disturbances for these
variables were identically zero and the first non-zero leading order disturbances are
those as given in (5). Also as in [2,15], we require that the product of the disturbance
frequency and wave number to be negative in order for the travelling disturbance
waves to propagate away from the jet exit section.

We consider the dependent variables in the equations (3a)–(3g) to be as sum of
the corresponding dependent variables for the steady flow and the disturbances. We
use these in the equations (3a)–(3g), subtract the equations for the steady flow from
the corresponding ones in these equations and linearize the resulting system with
respect to the amplitude of the disturbances. We then obtain the following system
of equations to the leading order terms in ε that we shall use for the linear stability
analysis of the steady flow:

∂u′

∂t1
+ u

∂u′

∂s1
=

1

We
∂R′

∂s1
+

1− η
Re

[
6R

du

ds

∂R′

∂s1
−R2∂

2R′

∂s21

]
(6a)

+
1

Re

{
2R(τ11 − τ22)

∂R′

∂s1
+R2

[∂τ ′1
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− ∂τ ′2
∂s1

]}
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∂R′
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∂R

∂s
+ u
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+

1
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[
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Using (5) in (6a)–(6g) for the disturbance quantities and dividing each equation by
T , we find seven linear algebraic equations for the s-dependent coefficients u∗, R∗,
X∗, Y ∗, Z∗, τ∗1 and τ∗2 of the disturbance quantities. It is found necessary to assume
that all these s-dependent coefficients for the dependent variables of the disturbances
are non-zero otherwise no non-zero disturbances are found to be counted.

For the temporal instability case, we have λ = λr + iλi and k = iki, where λr
is the real growth rate, i = (−1)0.5 is pure imaginary number, λi is the frequency
of the travelling wave disturbance and ki is the centerline wave number. The leading
order terms in ε [O(1/ε)] in the resulting equations from (6b), (6f) and (6g) then lead
to λ + ikiu = 0, which implies that λr = 0 and λi/ki = −u. Thus, no temporal
instability is possible, and the disturbances are simply travelling waves with zero
growth rates, and the speed of such waves increases with distance along the jet. These
waves also propagate away from the jet exit section since u > 0 as we found earlier
in Section 3 and so λi/ki < 0.

For the spatial stability case, we have λ = iλi and k = kr + iki, where the
growth rate of the disturbance is kr. The leading order terms in ε in the resulting
equations from (6b), (6f) and (6g) then lead to uk + iλi = 0, which implies that
kr = 0 and λi/ki = −u. Thus, no spatial instability is possible, and the disturbances
are again travelling waves with zero growth rates in both time and space. Similar to
the temporal stability case, these waves propagate away from the jet exit section, and
their speed increases with the arc length distance along the jet.

Next we consider linear stability of the steady flow with respect to disturbances
that can simultaneously grow or decay in both time and space. Thus, we set λ =
λr + iλi and k = kr + iki that both can be complex in general. Using these in (6a)–
(6g), we find that the leading order terms in (6b), (6f) and (6g) then lead to λ+ku = 0,
which implies that λr = −kru and λi/ki = −u. It can be seen from these results
that disturbance wave propagates away from the jet exit and its speed increases with
arc distance along the jet. The temporal growth rate is positive if the special growth
rate is negative, and vice versa spatial growth rate is positive if temporal growth rate
is negative.

To determine more information about the growth rate for such disturbances, we
find that the leading order terms in the simplified form of the equations (6c)–(6e) are
in terms of unknown k, X∗, Y ∗, Z∗ and u∗, which are non-zero as we explained
before. In addition, these three equations contain some of the dependent variables of
the steady solution that are considered to be given quantities for given values of the
parameters. From these equations, we find X∗, Y ∗ and Z∗ in terms of ku∗. Next,
we use the simplified form of equations (6b) and (6f)–(6g) to find ku∗, τ∗1 and τ∗2 in
terms of kR∗ and some of the known quantities for the dependent variables of the
steady flow. We then use these in the simplified form of (6a) to find a linear algebraic
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equation for (dk/ds) whose coefficients are very lengthy functions of the arc length
and the jet parameters and will not be given here. Considering non-zero k and non-
zero (dk/ds), we calculate the solutions to this algebraic equation by iteration for
given values of the parameters that can correspond to particular steady flow solutions.
We find that both ki and kr are dependent on the jet arc length, and we calculate kr
and ki for different values of the parameters and s. We found that regardless of the
values of the parameters, kr remains negative and ki is positive, and the magnitudes
of both of these quantities appear to increase with the arc length. Thus, going back to
the relation λr = −ukr, we see that the temporal growth rate of the spatiotemporal
instability is positive, while clearly from this relation the spatial growth rate of the
spatiotemporal instability is negative.

Figures 5 and 6 present, respectively, some typical values for temporal growth
rate and centerline wave number of the spatiotemporal disturbances that can cause
instability versus arc length for F = 4.0, We = 1.5, Re = 1.0, η = 0.1 and dif-
ferent values of Rb and De. The results that are given below are based on these
figures as well as from our additional calculations for different values of the pa-
rameters that we determine the temporal growth rate and the wave number of the
three-dimensional spatiotemporal disturbances that cause instability of the already
described three-dimensional steady flow. From these Figs. 5 and 6, it can be seen
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Figure 5.Temporal growth rate of spatiotemporal instability versus s for F=4.0, We =1.5, 

Re=1.0, =0.1 and different values of De=1.0 (Rb =1.0 dashed line; Rb =2 solid line) and 3.0 

(Rb =2.0 dotted line). 
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which have stabilizing effects on the steady flow and its possible instability.  

Fig. 5: Temporal growth rate of spatiotemporal instability versus s for F =4.0,
We =1.5, Re = 1.0, η = 0.1 and different values of De = 1.0 (Rb = 1.0
dashed line; Rb = 2 solid line) and 3.0 (Rb = 2.0 dotted line).
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directly that both rotational forces and viscoelasticity effects are destabilizing in the
sense that they significantly increase the temporal growth rate, both of such effects re-
duce the wave length of the most critical growing disturbances. In addition, the wave
speed of such disturbances grows with increasing the rotational forces, viscoelasticity
and the jet arc length.

I can also be seen for figures 5 and 6 that the rate at which such temporal growth
rate snd wave number increase with respect to the jet arc length are higher mostly for
higher rotational forces and viscoelasticity. Our additional calculations indicated that
such growth rate and the wave number and their rate of changes with respect to the arc
length increase with the force of gravity. However, the values such growth rate and
the wave number and their rates of changes with respect to the arc length decrease
with increasing the surface tension and viscosity, which have stabilizing effects on
the steady flow and its possible instability.

Thus, such critical disturbances superimposed on the steady solutions can increase
their amplitudes in time, but their amplitudes decay in space and their wave length
decreases with increasing the jet arc length. However, due to the assumed linear
instability in the present analysis, such temporally unstable disturbances cannot grow
indefinitely due to the assumed linear instability, and, thus, such disturbance should
decay to zero for sufficiently large distance from the jet exit within a time interval
where linear stability analysis is not invalidated. Our calculated results for different
values of the parameters and the jet arc length indicated that the growth rates, wave
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speeds and wave numbers of such disturbances can increase with the gravity effect,
rotation rate and viscoelasticity but can decrease with increasing viscosity and surface
tension.

5 CONCLUSIONS AND REMARKS

We developed models for flow and stability of three-dimensional nonlinear rotating
viscoelastic jet with gravity effect. We were interested to find the effects due to the
three-dimensionality of the jet, presence of the gravity force, rotational forces and
the viscoelasticity on the steady solutions for the jet quantities and on the stability of
such solutions. We determined the steady solutions theoretically as well as numer-
ically. We found that in contrast to the two-dimensional results [14] the values of
the jet speed and tensile force raised up considerably at higher values by the three-
dimensionality of the jet and the presence of the gravity force, and these quantities
of the jet increase at higher rates with increasing the arc length, rotation rate, gravity
and viscoelasticity. However, the value of the jet radius dropped down notably to
lower value due to the presence of the gravity and the three-dimensionality nature of
the present jet system, and the jet radius decreases at higher rates with increasing the
effects due to the rotation, gravity and the viscoelasticity.

We also used multiple scale technique to investigate the linear stability of the
three-dimensional steady solutions versus superimposed small amplitude traveling
wave disturbances in both two- and three-dimensional cases. For the most critical dis-
turbances in time alone or in space alone, which were three-dimensional in nature, we
found that the viscoelastic jet remains stable. For the most critical disturbances that
can grow simultaneously in time and space and were three-dimensional, we found
that linear instability is possible only within a time interval where linear stability
analysis is valid, but it is required that such disturbance be in three-dimensional space
and its growth rate, wave speed and wave number be dependent on the arc length of
the jet.

About the comparison of the present three-dimensional results and those given
in [2, 7, 13–15], for two-dimensional models that were described before in section
1, together with table 1 and the two last paragraphs that were given in Section 3,
it should be emphasized that there are significant differences between the type of
jet system and the results in the present work and those in above references. In
the present study we provided new results about presence of three-dimensionality
of the jet system and the gravity force on the three-dimensional steady solutions
and the stability of such three-dimensional solutions with respect to the most critical
disturbances thst were found to be three-dimensional and not two-dimensional, while
the previous studies were either for inviscid jet cases [2, 7] or for viscoelastic jet
cases but all such models in above references were for unrealistic two-dimensional
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jet, where the jet centerline was restricted to lie in a fixed horizontal plane, and no
gravity effect was included. The values of the jet speed, strain rate, tensile force and
stretching rate in the present case were notably higher and more realistic in agreement
with experimental evidence [10] than in any of those given in planar case, and their
rate of increase with respect to the rotation rate, viscoelasticity and the arc length
were significantly higher in the present case than in those for planar jet models. The
jet radius was notably smaller and more realistic in the present case than that in the
planar case in agreement with experiments [10], and its rates of decrease with respect
to the rotation rate, viscoelasticity and the arc length were notably larger here than
in the planar case. In contrast to the planar case, the curvature of jet trajectory in
the present case was more correctly higher locally for higher rotation rate and the
viscoelasticity and for lower surface tension and polymer viscosity.

In addition, the present three-dimensional results agree more closely with the cor-
responding three-dimensional experimental results [10]. About stability results, we
should note that steady two-dimensional solution was temporally unstable [2, 13] or
spatially unstable [2], while in the present case and in [15] steady solutions were
found to be stable temporally or spatially, and only a combined three-dimensional
spatiotemporal type instability was found to be possible. However, in the planar
case [15] instability was detected for particular planar disturbance with restricted
constant wave number whose growth rate was notably smaller than in the present
most critical three-dimensional instabilities due to the particular three-dimensional
disturbances whose wave numbers were found to increase with arc length. In ad-
dition, the growth rates, wave speed and wave numbers of such three-dimensional
disturbances were found to increase significantly with the rotation rate, viscoelas-
ticity, gravity and the arc length at much higher values and rates than those in the
restricted planar case [15]. Thus, present realistic three-dimensional model provides
significantly more new qualitative results than in the cases of planar counterpart.

In regard to the application of our investigated three-dimensional steady part for
the fiber jet formation, our work is considered the first stage in the real case after the
jet leaving the spinneret (Fig. 1) within the fiber production process. Thus, additional
work will also be needed to investigate in future about other features of the fiber jet
and ways for its variables to be controlled for ultimate fiber diameter that is strongly
dependent upon the jet formation, aerodynamic ambient forces, evaporation of the
solvent, humidity and temperature of the environment and collection system.

In the three-dimensional experiments carried out in [10] the authors observed
traveling wave disturbances, but they did not report any instability that could have
resulted from such disturbances that could have resulted in jet breakup. We also
should note that the predicted very particular instability in the present study may
possibly be initially formed in their experiments but then was stabilized quickly due
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to the presence of other factors that were existed in the experiments such as presence
of ambient flow, evaporation and solidification of the fiber jets before the fibers were
collected in the container, and the container itself could also exert stabilization on the
fiber jets. It is the author’s desire to take into account these other factors in his future
investigation.

Finally, as an applicability in the experimental studies or in the fiber production
technology, it should be noted that from a modeling point of view it is important
in using three-dimensional jet model in the presence of gravity to collect relevant
parameter values for a given fiber jet case in order to achieve more correctly and
accurately production of such fiber jet case.
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