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ABSTRACT: A mathematical model is developed in the present study to in-
vestigate the heat and mass transfer phenomena in blood flow under stenotic
condition. The non-Newtonian Carreau fluid model is used to characterize the
streaming blood. The nonlinear governing equations are solved numerically
by employing a finite difference scheme along with suitable initial and bound-
ary conditions under the action of applied magnetic field. Various significant
hemodynamic parameters are examined for additional qualitative insight of the
flow-field, temperature-field and concentration-field over the entire flow regime
with the help of the numerical results obtained in this study. Comparisons are
made with available results in open literature and are found in good agreement
between these two results.

KEY WORDS: Heat and mass transfer, Non-Newtonian fluid, Magnetic field,
Finite-difference.

1 INTRODUCTION

Heat and mass transfer phenomena in constricted channels have significant practi-
cal implications in engineering fields and Biorheology. The motion of an electri-
cally conducting fluid across a magnetic field induces current, which affects the fluid
flow. In fact the propagating field is influenced by Lorentz force. Understanding the
physics of magnetohydrodynamic (MHD) flow, prediction of flow separation region
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and flow bifurcation phenomenon is crucial in many engineering flow devices. Be-
side, the study of MHD blood flow in arteries is of paramount physical interest due to
its significant clinical implications. For instance, studies in magnetic drug targeting
to the whole body and the development of magnetic devices for cell separation [1,2].
Several research works revealed that the application of a uniform transverse magnetic
field alters the hemodynamic parameters and temperature of streaming blood.

Fluid flow separation is a fundamental problem in fluid mechanics. Separation
of flow is an undesirable phenomenon in engineering applications [3, 4]. Flow sepa-
ration causes energy loss, slow pressure recovery, increase of thickness of boundary
layer developed over a surface etc. Performance of fluid flow devices depends sig-
nificantly on the control of flow separation phenomenon and instability of flow [5].
Control of flow quantities with the application of electromagnetic forces is therefore
an attractive research area to fluid mechanists.

The steady flow of an electrically conducting fluid in a channel in presence of a
uniform transverse magnetic field was studied by many researchers [6–8]. The veloc-
ity of flowing blood decreases significantly when the Hartmann number is increased
substantially [9]. Pulsatile flow of blood through a two-dimensional stenosed channel
was investigated by [10]. They used a non-Newtonian viscosity model for blood and
assumed the flow field to be axisymmetric. Bandyopadhyay and Layek [11] studied
the effect of magnetic field on pulsatile flow of a Newtonian fluid through a con-
stricted channel. In their study it was revealed that the regions of flow separation
could be controlled with the application of suitable magnetic field.

None of these studies has considered the heat and mass transfer phenomenon.
Therefore a sincere attempt is taken in the present study to analyze the pulsatile flow
of an electrically conducting non-Newtonian fluid (modeled as blood) through a con-
stricted channel in presence of magnetic field. The aim of the present study is to
report the effect of magnetic field, applied in the transverse direction, on the flow
field and heat and mass transfer along the channel wall. The induced magnetic field
is neglected due to the low electrical conductivity of streaming blood.

2 BLOOD VISCOSITY MODEL

Most of the industrial fluids or biological fluids are non-Newtonian in nature. Human
blood, flowing through small diameter arteries at low shear-rate shows deviation from
Newtonian viscosity. Several experimental observations established that the viscosity
of blood is a decreasing function of its shear rate and has asymptotic values for very
low or very high shear rates. Several constitutive equations, representing this shear
thinning behaviour, are found in literature.

The shear dependent Carreau viscosity model consists of four parameters and is
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described as [12]

(1) µ∗(γ̇∗) = µ∞ + (µ0 − µ∞)(1 + Λ∗2γ̇∗)(n−1)/2,

where γ̇∗ is the shear rate, µ0 and µ∞ are the asymptotic zero and infinite shear
viscosities, Λ∗ ≥ 0 is a material constant that represents the degree of shear thinning.
Values of these parameters for human blood, found in literature, are µ0 = 0.056 Pa s,
µ∞ = 0.00345 Pa s, Λ∗ = 3.313 s, n = 0.3568 [12].

3 FORMULATION OF THE PROBLEM

3.1 GOVERNING EQUATIONS

We consider the two-dimensional laminar pulsatile flow of an electrically conduct-
ing incompressible viscous non-Newtonian fluid with electrical conductivity σ and
constant density ρflowing through an infinite rigid walled parallel plate channel hav-
ing axisymmetric constrictions on both walls (a model of blood flow through a rigid
artery with stenosis). Let x∗, y∗) be the Cartesian coordinate of a material point in
the flow regime, where the x∗-axis is along the lower wall. Let u∗v∗ be the velocity
components along the x∗, y∗ directions respectively. Let p∗ be the pressure, T ∗ be
the temperature and c∗ be the concentration field of the fluid.

Consider a uniform magnetic fieldB0 which is applied in the direction of y∗-axis.
The magnetic permeability of the conducting medium is assumed to be constant.

Let us introduce the following non-dimensional variables:

x =
x∗

h
, y =

y∗

h
, u =

u∗

U0
, v =

v∗

U0
,

p =
p∗

ρU2
0

, t =
t∗

T
, θ =

T ∗ − T ∗w
T ∗∞ − T ∗w

, c =
c∗ − c∗w
c∗∞ − c∗w

,(2)

µ =
µ∗

µ∞
, λ =

µ0
µ∞

, Λ =
Λ∗U0

h
, γ̇ =

γ̇∗h

U0
,

where h is the height of the non-constricted part of the channel, U0 is the maximum
flow velocity in the x-direction, T is the period of the flow pulsation, T ∗w, T ∗∞ and
c∗w, c∗∞ be respectively the uniform temperature and concentration along the channel
walls and at the inlet. The unsteady two dimensional Navier-Stokes’ equations of
motion of an electrically conducting incompressible non-Newtonian viscous fluid in
presence of magnetic field may be written in dimensionless form as [13, 14]

(3) St
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

= −∂p
∂x

+
1

Re

[
2
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

{
µ

(
∂u

∂y
+
∂v

∂x

)}]
− Ha2

Re
u
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and

(4) St
∂v

∂t
+u

∂v

∂x
+v

∂v

∂y
= −∂p

∂y
+

1

Re

[
2
∂

∂y

(
µ
∂v

∂y

)
+

∂

∂x

{
µ

(
∂u

∂y
+
∂v

∂x

)}
,

]
where St = h/(U0T ) is the Strouhal number, Re = ρU0h/µ∞ is the Reynolds
number and Ha = B0

√
(σh)/(U0ρ) is the Hartmann number. The last term in

equation (3) represents the Lorentz force, which is the electro-magnetic force acting
on the flow field.

The continuity equation is

(5)
∂u

∂x
+
∂v

∂y
= 0 .

Heat and mass transfer phenomena in streaming blood are governed by the following
two dimensionless equations [13–15]:

(6) St
∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

1

PrRe

(
∂2θ

∂x2
+
∂2θ

∂y2

)
+
Ec

Re
µγ̇2 +Ha2Ecu2

and

(7) St
∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
=

1

ReSc

(
∂2c

∂x2
+
∂2c

∂y2

)
+
Sr

Re

(
∂2θ

∂x2
+
∂2θ

∂y2

)
.

Here, Pr = µcp/k is the Prandtl number, Ec = (U2
0 )/(cp(T

∗
∞ − T ∗w)) is the Eckert

number, Sc = µ/(ρD) is the Schmidt number, Sr =
ρDkT (T ∗∞ − T ∗w)

µ∞T ∗m(c∗∞ − c∗w)
is the Soret

number; cp, k, D, kT , T ∗m being the specific heat at constant pressure, the thermal
conductivity, the coefficient of diffusion, the thermal diffusion ratio and the mean
temperature of the streaming blood respectively.

The dimensionless blood viscosity is obtained as

(8) µ (γ̇) = 1 + (λ− 1)
{

1 + Λ2γ̇
}(n−1)/2

with

(9) γ̇ =

[
2

{(
∂u

∂x

)2

+

(
∂v

∂y

)2
}

+

(
∂u

∂y
+
∂v

∂x

)2
]1/2

.
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3.2 GEOMETRY OF THE CHANNEL

The functions f1 (x) and f2 (x) that represent the geometry of the lower and upper
walls respectively may be represented mathematically in dimensionless form as [7,
16]

(10) f1 (x) = δ1e
−a1(x−b1)2 −∞ < x <∞

and

(11) f2 (x) = 1− δ2e−a2(x−b2)
2

−∞ < x <∞ ,

where δ1, δ2 represent the heights of the constrictions, a1, a2 represent the rate at
which the boundary profiles change and b1, b2 denote their positions. In our study,
these parameters are taken as δ1 = δ2 = 0.3, a1 = a2 = 1 and b1 = b2 = 3 (Fig. 1).
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4 STREAM FUNCTION-VORTICITY FORMULATION

Let us now introduce the dimensionless Stokes stream function ψ (x, y, t) by

(12) u =
∂ψ

∂y
, v = −∂ψ

∂x

and the corresponding vorticity function ω (x, y, t) by

(13) ω =
∂v

∂x
− ∂u

∂y
.
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Cross-differentiation of the momentum equations (3) and (4), with use of (12) and
(13), yields

(14) St
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
=

1

Re

[
µ

(
∂2ω

∂x2
+
∂2ω

∂y2

)
+ 2

(
∂µ

∂x

∂ω

∂x
+
∂µ

∂y

∂ω

∂y

)

+ 2
∂2µ

∂x∂y

(
∂v

∂y
− ∂u

∂x

)
+

(
∂2µ

∂x2
− ∂2µ

∂y2

)(
∂u

∂y
+
∂v

∂x

)]
+
Ha2

Re

∂u

∂y
.

The mass conservation equation, with the use of (12) and (13), transforms to the
Poisson equation given by

(15)
∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω .

5 INITIAL AND BOUNDARY CONDITIONS

The initial conditions for the velocity, temperature and concentration field were set
as

(16) u = y
(
1− y2

)
, v = 0, θ = y

(
1− y2

)
, c = y

(
1− y2

)
.

Though the initially chosen velocity, temperature or concentration profiles are not
physiological, it is found that final results do not depend on these profiles. Further
it is found that the results do not change significantly when the simulation runs for
more than three time periods. Therefore, the simulation is carried out up to three time
periods in all cases so that all transitional effects vanish within these time periods.

A time dependent non-dimensional pulsatile flow rate [17]

(17) fr(t) = 0.4355 + 0.05 cos 2πt+ 0.25 sin 2πt− 0.13 cos 4πt+ 0.13 sin 4πt

− 0.10 cos 6πt− 0.02 sin 6πt− 0.01 cos 8πt− 0.03 sin 8πt

is assumed at the inlet cross section of the channel. Two parts of the physiologi-
cal flow rate, systole and diastole, are included in this flow profile (Fig. 2). Here,
t = 0.18 and t = 0.45 are respectively the times corresponding to the systolic and
diastolic peak flows.

For the boundary condition at the outlet cross section of the channel, the flow is
assumed to be fully developed i.e.

(18)
∂ψ

∂x
=
∂ω

∂x
= 0 at x = L .
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The usual ‘no slip’ condition is imposed on the channel walls which gives

(19)
∂ψ

∂x
=
∂ψ

∂y
= 0 along y = f1 (x) and y = f2 (x) .

Now the mass flux across any cross-sections of the channel at any instant of time
is

fr (t) =

f2(x)∫
f1(x)

∂ψ

∂y
dy .

This gives the value of the stream function ψ at the channel wall as

(20) ψ (x, f1 (x)) = 0 , ψ (x, f2 (x)) = fr (t) .

According to the choice of the non-dimensional variables θ and c,

(21) θ = 1 , c = 1 at x = 0

and

(22) θ = 0 , c = 0 along y = f1 (x) and y = f2 (x) .

At the outlet cross section of the channel, temperature and concentration gradient
are assumed to be zero. Thus

(23)
∂θ

∂x
= 0 ,

∂c

∂x
= 0 at x = L .
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6 COORDINATE TRANSFORMATION

Let us choose a suitable coordinate system so that the constricted geometry trans-
forms to a rectangular geometry in the transformed plane. For this, let us introduce
the transformations [8]

(24) ζ = x , η =
y − f1 (x)

f2 (x)− f1 (x)
.

The vorticity transport equation (14) and the Poisson equation for pressure (15) is
transformed in new coordinates (ζ, η) as

(25) St
∂ω

∂t
+ u
(∂ω
∂ζ
− B∂ω

∂η

)
+ vG ∂ω

∂η
=

1

Re

[
µ
{∂2ω
∂ζ2
− 2B ∂2ω

∂ζ∂η

+(B2+G2)∂
2ω

∂η2
−(A−2BH)

∂ω

∂η

}
+2
{(∂µ

∂ζ
−B∂µ

∂η

)(∂ω
∂ζ
−B∂ω

∂η

)
+G2∂µ

∂η

∂ω

∂η

}
+ 2G

( ∂2µ
∂ζ∂η

− B∂
2µ

∂η2

)(
G ∂v
∂η
− ∂u

∂ζ
+ B∂u

∂η

)
+
{∂2µ
∂ζ2
− 2B ∂2µ

∂ζ∂η

+ (B2 − G2)∂
2µ

∂η2
− (A− 2BH)

∂µ

∂η

}(
G ∂u
∂η

+
∂v

∂ζ
− B∂v

∂η

)]
+
Ha2

Re
G ∂u
∂η

and

(26)
∂2ψ

∂ζ2
− 2B ∂

2ψ

∂ζ∂η
+
(
B2 + G2

) ∂2ψ
∂η2
− (A− 2BH)

∂ψ

∂η
= −ω .

The transformed form of the heat and mass transport equations are given by

(27) St
∂θ

∂t
+ u
(∂θ
∂ζ
− B∂θ

∂η

)
+ vG ∂θ

∂η
=

1

PrRe

{
∂2θ

∂ζ2
− 2B ∂2θ

∂ζ∂η

+ (B2 + G2)∂
2θ

∂η2
− (A− 2BH)

∂θ

∂η

}
+
Ec

Re
µγ̇2 +Ha2Ecu2

and

(28) St
∂c

∂t
+ u
(∂c
∂ζ
− B ∂c

∂η

)
+ vG ∂c

∂η
=

1

ReSc

{
∂2c

∂ζ2
− 2B ∂2c

∂ζ∂η

+ (B2 + G2) ∂
2c

∂η2
− (A− 2BH)

∂c

∂η

}
+
Sr

Re

{∂2θ
∂ζ2
− 2B ∂2θ

∂ζ∂η

+ (B2 + G2)∂
2θ

∂η2
− (A− 2BH)

∂θ

∂η

}
.
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The quantities A, B, G andH are defined by

A =
ηf ′′2 + (1− η)f ′′1

f2 − f1
, G =

1

f2 − f1
,

B =
ηf ′2 + (1− η)f ′1

f2 − f1
, H =

f ′2 − f ′1
f2 − f1

.

(29)

The boundary conditions along y = f1(x) and y = f2(x) are now on η = 0 and
η = 1 line.

7 NUMERICAL METHOD

A finite difference technique is employed over a uniformly spaced grid in the (ζ, η)
plane to solve the governing non-linear equations [4]. All spatial derivatives in equa-
tions (25)–(28) are discretized by central difference approximations, while the time
derivatives are discretized by forward difference approximation.

A uniformly spaced grid is generated by introducing the mesh points (ζi, ηj)
where ζi = i∆ζ and ηj = j∆η, where ∆ζ and ∆η are respective increments of
ζ and η. The finite difference representation of t is tk = k∆t, ∆t being the time
increment.

Corresponding to each line ζ = ζi in η-direction, a tri-diagonal system of alge-
braic equations is formed. Equation (26) is arranged as

(30) A(j)ψk+1
i,j−1 +B(j)ψk+1

i,j + C(j)ψk+1
i,j+1 = D(j) ,

where the quantities A(j), B(j), C(j) and D(j) have following values:

A (j) =
A− 2BH

2∆η
+
B2 + G2

(∆η)2
,

B (j) = − 2

(∆ζ)2
−

2
(
B2 + G2

)
(∆η)2

,

C (j) = −A− 2BH
2∆η

+
B2 + G2

(∆η)2
,

D (j) = −ωk
i,j −

ψk
i+1,j + ψk

i−1,j

(∆ζ)2
+ B

ψk
i+1,j+1 − ψk

i+1,j−1 − ψk
i−1,j+1 + ψk

i−1,j−1
2∆ζ∆η

.

Thomas algorithm [18] is used to solve the tri-diagonal system of equations (30) with
the known values ofA (j) , B (j) , C (j) andD (j) at the kth-time level and the value
of ψ at the (k + 1)th-time level is obtained. Updated value of ψ gives u and v as

(31) u = G ∂ψ
∂η

, v = −∂ψ
∂ζ

+ B∂ψ
∂η

.
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Obtained values of u and v are used in the coupled equations (3) and (4) to solve the
pressure field over the flow regime. For this, a zero pressure is assigned at the inlet
cross-section.

Employing the no-slip boundary condition on (31) and then using the equation
(26) a second order accurate formulae for wall vortices are obtained as

ω (ζ, 0) = −2
(
B2 + G2

) ψ (ζ,∆η)− ψ (ζ, 0)

(∆η)2
,

ω (ζ, 1) = −2
(
B2 + G2

) ψ (ζ, 1−∆η)− ψ (ζ, 1)

(∆η)2
.

(32)

These formulae involves a coupling between the vorticity at the boundary and the
stream function in the domain.

The momentum equation (25) is now solved exactly in the same way as stated
above. The discretized form of the momentum equation is given by

(33) P (j)ωk+1
i,j−1 +Q (j)ωk+1

i,j +R (j)ωk+1
i,j+1 = S(j) ,

where the quantities P (j), Q (j), R (j) and S (j) are given by

P (j) = −vG − uB
2∆η

− µA− 2BH
2Re∆η

− B
Re∆η

(
∂µ

∂ζ
− B∂µ

∂η

)
− µ B

2 + G2

Re (∆η)2
,

Q (j) =
St

∆t
+ 2µ

B2 + G2

Re (∆η)2
,

R (j) =
vG − uB

2∆η
+ µ
A− 2BH
2Re∆η

+
B

Re∆η

(
∂µ

∂ζ
− B∂µ

∂η

)
− µ B

2 + G2

Re (∆η)2

and

S(j) =
St

∆t
ωk
i,j +

{
− u∂ω

∂ζ
+

1

Re

[
µ
(∂2ω
∂ζ2
− 2B ∂2ω

∂ζ∂η

)
+ 2
(∂µ
∂ζ
− B∂µ

∂η

)∂ω
∂ζ

+ 2G
( ∂2µ
∂ζ∂η

− B∂
2µ

∂η2

)(
G ∂v
∂η
− ∂u

∂ζ
+ B∂u

∂η

)
+
[∂2µ
∂ζ2
− 2B ∂2µ

∂ζ∂η
+
(
B2 − G2

)∂2µ
∂η2

− (A− 2BH)
∂µ

∂η

](
G ∂u
∂η

+
∂v

∂ζ
− B∂v

∂η

)]
+
Ha2

Re
G ∂u
∂η

}k

i,j

.
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The heat transfer equation (27) is solved by using its discretized version

(34) θk+1
i,j = θki,j +

∆t

St

[
− u
(∂θ
∂ζ
− B∂θ

∂η

)
− vG ∂θ

∂η
+

1

PrRe

{∂2θ
∂ζ2
− 2B ∂2θ

∂ζ∂η

+ (B2 + G2)∂
2θ

∂η2
− (A− 2BH)

∂θ

∂η

}
+
Ec

Re
µγ̇2 +Ha2Ecu2

]k
i,j

.

Updated temperature field is now employed in the mass transfer equation. The dis-
cretized form of the mass transfer equation (28) is

ck+1
i,j = cki,j +

∆t

St

[
− u
(∂c
∂ζ
− B ∂c

∂η

)
− vG ∂c

∂η
(35)

+
1

ReSc

{∂2c
∂ζ2
− 2B ∂2c

∂ζ∂η
+ (B2 + G2) ∂

2c

∂η2
− (A− 2BH)

∂c

∂η

}]k
i,j

+

[
Sr

Re

{∂2θ
∂ζ2
− 2B ∂2θ

∂ζ∂η
+ (B2 + G2)∂

2θ

∂η2
− (A− 2BH)

∂θ

∂η

}]k+1

i,j

.

Dimensionless wall shear stress, Nusselt number [14] and Sherwood number [19],
representing the local heat and mass flux to the arterial wall respectively, are com-
puted by using the formulae

(36) τw = −
(
µ
∂u

∂y

)
wall

, Nu = −
(
∂θ

∂y

)
wall

and Sh = −2

(
∂c

∂y

)
wall

.

For a better insight into the heat and mass transport phenomenon in a pulsatile
flow, time-averaged Nusselt number and Sherwood number are computed by using
the formulae

(37) TANu =

1∫
0

Nudt and TASh=

1∫
0

Shdt .

8 STABILITY CRITERIA OF THE NUMERICAL SCHEME

The time step ∆t is selected through some restrictions on the fluid flow. The first
restriction is the well-known CFL [20] condition. It states that the fluid can move
through at most one cell in each time step, i.e.

(38) ∆t1 ≤ min

[
∆x

|u|
,

∆y

|v|

]
(i,j)

.
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The viscous effect of the fluid gives the second restriction and is given by

(39) ∆t2 ≤ min

[
Re

2

∆x2∆y2

∆x2 + ∆y2

]
(i,j)

.

Finally, ∆t is calculated by the relation

(40) ∆t = βmin [∆t1, ∆t2] , 0 < β < 1 .

9 RESULTS AND DISCUSSION

Grid independence test has been performed by calculating the axial u-velocity and
shown in Table 1. Obtained results for different grid sizes show that the result differs
for grid-size 0.015 × 0.015 but almost same for other two grid sizes 0.010 × 0.010
and 0.005 × 0.005. Finally, the grid-size 0.010 × 0.010 is selected for further com-
putations.

Table 1: Velocity (u) in steady flow of a Newtonian fluid in a long straight channel

Grid Re y u Exact value of u (u = y − y2)

0.015× 0.015
0.1 0.0911 0.09
0.3 0.2152 0.21
0.5 0.2584 0.25

0.010× 0.010
0.1 0.0899 0.09

600 0.3 0.2098 0.21
0.5 0.2497 0.25

0.005× 0.005
0.1 0.0899 0.09
0.3 0.2097 0.21
0.5 0.2497 0.25

To verify the present numerical scheme we have calculated the axial velocity for
the steady flow of a Newtonian fluid in a long straight channel for Re = 600 and

Table 2: Results for axial velocity in steady flow of a Newtonian fluid in a long
straight channel for Re = 600, Ha = 0

y = 0 y = 0.1 y = 0.3 y = 0.5 y = 0.7 y = 0.9 y = 1 Scheme

u = y − y2 0 0.09 0.21 0.25 0.21 0.09 0 Exact
u 0 0.0899 0.2099 0.2499 0.2099 0.0899 0 Midya et al. [7]
u 0 0.0899 0.2098 0.2497 0.2098 0.0899 0 Present



Subrata Mukhopadhyay, Mani Shankar Mandal, Swati Mukhopadhyay 13

14 
 

 

Fig. 1. Schematic diagram of the constricted channel Fig. 2. Pulsatile flow rate  

 

 
Fig. 3. Axial velocity profile at 𝑥 = 4 for (A) various Re, 𝑆𝑡 = 0.1, Ha = 2 and (B) 

various Ha, 𝑆𝑡 = 0.1, Re = 200 

 

 
Fig. 4. Variation of peak wall shear stress with Hartmann number 

 

 

(a)

14 
 

 

Fig. 1. Schematic diagram of the constricted channel Fig. 2. Pulsatile flow rate  

 

 
Fig. 3. Axial velocity profile at 𝑥 = 4 for (A) various Re, 𝑆𝑡 = 0.1, Ha = 2 and (B) 

various Ha, 𝑆𝑡 = 0.1, Re = 200 
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Fig. 3: Axial velocity profile at x = 4 for: (a) various Re, St = 0.1, Ha = 2; and
(b) various Ha, St = 0.1, Re = 200.

compared the result with the result obtained by Layek and Midya [7] and are pre-
sented in Table 2. An excellent agreement is found which confirms the accuracy of
our numerical code.

At the very beginning of our discussion, to demonstrate the effects of Reynolds
number and Hartmann number on the axial velocity profile, Figs. 3 (a) and (b) are
presented. Axial velocity is maximum near the channel axis and decreases towards
both the walls. Fluid flow becomes reversed near both walls and formation of vortices
are noted. Intensity of back flow is stronger near the upper wall compared to the lower
wall. Back flow velocity gets enhanced with increasing Reynolds number (Fig. 3 (a)).
However, this flow reversal phenomenon could be reduced by increasing the intensity
of the externally imposed magnetic field (Fig. 3 (b)).

Next we shall focus our attention to investigate the effect of the magnetic field on
the peak shear stress at both walls. Peak value of shear stress at systolic peak flow
time (Fig. 4) is noted near the throat of the stenosis for both walls. Peak shear stress
at lower wall has larger magnitude than that at upper wall. Peak shear stress increases
with the intensity of the applied magnetic field at both walls.

Figures 5 (a) and (b) represent the distributions of wall pressure along the lower
and upper walls respectively at the systolic peak flow time. A rapid fall in wall pres-
sure occurs near the constricted region of the channel. Such a phenomenon produces
a health risk. The arterial wall may collapse in this region due to the sudden fall in
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Fig. 5: Distribution of wall pressure along: (a) lower wall; and (b) upper wall for
various Ha and St = 0.1, Re = 200.
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Fig. 6: Distribution of time averaged Nusselt number along: (a) lower wall; and (b)
upper wall for various Ha and St = 0.1, Re = 200, Pr = 21, Ec = 0.0002.

wall pressure [21]. Wall pressure falls further along the lower wall than the upper
wall. Increasing Hartmann number causes further fall in wall pressure along the both
walls.

Our next interest is to study the effect of the magnetic field on the heat transfer
phenomenon at both walls of the channel by investigating the distribution of time
averaged Nusselt number. For this Figs. 6 (a) and (b) are presented for the variations
of Ha. At each wall it is observed that the heat transfer rate rises significantly at
the constricted portion of the channel and attains a maximum value near the throat.
More heat transfer takes place at the lower wall compared with the upper wall. It is
found that increasing intensity of the magnetic field increases the heat transfer rate.
These results agree well with Majee and Shit [16] and Tashtoush and Magableh [22].
In some regions at the downstream side (for upper wall at upstream side also) of
the constriction, time averaged Nusselt number becomes negative. Thus in these
regions heat transfer takes place in reverse direction in most of the time of the cardiac
cycle indicating that the fluid’s temperature falls below the wall temperature in these
regions.

Mass transportation from the blood stream into the arterial wall is measured with
the help of Sherwood number. For a better understanding of the mass transfer phe-
nomenon for a pulsatile flow in a constricted channel and to investigate the effect
of applied magnetic field on it, distribution of the time-averaged Sherwood num-
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Fig. 7: Distribution of time averaged Sherwood number along: (a) lower wall; and
(b) upper wall for various Ha and St = 0.1, Re = 200, Sc = 3, Sr = 0.4.

ber along both wall are computed for several Hartmann number and depicted in
Figs. 7 (a) and (b). Rate of mass transfer along the lower wall increases with in-
creasing Hartmann number and maximum mass transfer rate noted near the throat.
Several peaks exist in the downstream side indicating the possibility for formation of
several stenotic lesions. However at the upper wall mass transfer in reverse direction
is found in some region around the stenotic throat and increased mass transfer rate is
observed at both the fore and aft side of the constriction.

For a better insight into the flow field, pattern of streamlines at t = 0.18 are
presented in Figs. 8 (a)–(c) for various Hartmann numbers. Two flow separation
zones are seen in the downstream vicinity of the constriction at both walls. Strength
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Fig. 8: Pattern of streamlines at t = 0.18
for: (a) Ha= 0; (b) Ha= 2; (c) Ha= 4
and St = 0.1, Re = 200.
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Fig. 9: Temperature profile at t = 0.18
for: (a) Ha = 0; (b) Ha = 2; (c) Ha =
4 and St = 0.1, Re = 200, Pr = 21,
Ec = 0.0002.

of vortex formed at the upper wall is stronger than that at the lower wall. It is found
that the vortices gradually disappear with increasing Hartmann number. Thus suitable
strength of magnetic field may be applied to prevent or delay the flow separation.

Temperature profile of the fluid at the systolic peak flow time for various Hart-
mann number are reflected through Figs. 9 (a)–(c). Applied magnetic field produces
heat which rises the temperature of the fluid. Thus with increasing Hartmann number,
fluid’s temperature gets enhanced from the central region to the boundaries. Produc-
tion of heat with increasing intensity of the magnetic field increases the rate of heat
transfer at the channel walls.

Figures 10 (a)–(c) and Figs. 11 (a)–(c) are prepared to exhibit the concentration
profile of the fluid at the systolic peak flow time for various Hartmann number and
Soret number respectively. Mass concentration of the fluid gets dispersed from the
axial region to the boundaries with increasing Hartmann or Soret number and in-
creases the mass transfer rate at the channel walls. At the lower wall concentration
scatters more in the downstream side, but for the upper wall it happens for both up-
stream and downstream side of the constriction. Thus formation of a stenosis in a
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0.18 for: (a) Ha = 0; (b) Ha = 2;
(c) Ha = 4 and St = 0.1, Re = 150,
Sc=3, Sr = 0.4.
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 Fig. 11. Concentration profile at 𝑡 = 0.18 for (A) 𝑆𝑟 = 0, (B) 𝑆𝑟 = 0.2, (C) 

𝑆𝑟 = 0.4 and 𝑆𝑡 = 0.1, Re = 150, Ha = 2, 𝑆𝑐 = 3 

(c)

Fig. 11: Concentration profile at t =
0.18 for: (a) Sr = 0; (b) Sr = 0.2; (c)
Sr = 0.4 and St = 0.1, Re = 150,
Ha = 2, Sc = 3.

blood vessel further influence in the development of the disease and increase in Hart-
mann and Soret number may worsen the situation.

10 CONCLUSION

Computational results for the MHD pulsatile flow of a non-Newtonian electrically
conducting fluid in a two-dimensional constricted channel have been obtained in the
present investigation. The governing non-linear equations of motion together with the
equations of heat and mass transfer have been solved numerically under the MHD
framework. The study reveals that the applied magnetic field has prominent effect
on the flow field and heat and mass transfer phenomenon. Main findings of this
investigation could be summarized as follows:

• The flow field is asymmetric for Reynolds number (≥ 150) taken in this study.

• Applied magnetic field increases the peak wall shear stress at both walls.

• Flow separation could be prevented or delayed with the application of suitable
strength of magnetic field.

• Increasing Hartmann number enhances the rate of heat transfer at both walls.

• Applied magnetic field increases the rate of mass transfer at channel walls.

• External magnetic field may promote the development of atherosclerosis.

The authors state that there is no conflict of interest.
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