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ABSTRACT: This paper uses a quasi-3D shear deformation theory accounting
for integral terms and including the stretching effect to study the free vibration
of FG plates with simply supported edges. A new function shape is used to
show the variation of tangential stresses through the z-direction of the plate.
Poisson’s ratio is supposed to be constant, but Young’s modulus and densities
are assumed to be graded in the thickness direction according to the power
law function. The present plate theory satisfies the zero tension on the upper
and lower surfaces of the FG plate without using shear correction factors. The
equations of motion are obtained via Hamilton’s principle and solved using
Navier’s solution type. The present natural frequencies correspond with the
ones in many publications; the outcomes of geometrical ratio, side to thick-
ness ratio, and the material index on the natural frequencies of SS-FGP are
investigated.

KEY WORDS: SS-FGP; quasi-3D model; stretching effect; free vibration;
Hamilton’s rule; Navier’s solution.

1 INTRODUCTION

Functionally graded materials (FGMs) are advanced composite materials that have a
continuous variation of material properties from one surface to another, thus elimi-
nating the stress concentration found in laminated composites. The concept of FGMs
was first proposed in 1984 by a group of material scientists in Japan, Koizumi [1].
FGMs offer great promise in applications where the operating conditions are severe.
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For example, heat exchanger tubes, electrically insulating metal/ceramic joints, and
plasma facings for fusion reactors [2–6]. They are also ideal for minimizing thermo-
mechanical mismatch in metal-ceramic bonding [7–9].

The wide application of heterogeneous materials with combined characteristics
in all fields leads researchers to study their bending, buckling and vibration be-
havior. The kinematics retained plays a very important role in obtaining the re-
sults. Several models have been proposed, beginning with the Love-Kirchhoff model,
which is effective only for thin plates because of the neglect of the transverse shear
stresses [10, 11], and the Reissner-Mindlin model, which considers the uniform dis-
tribution of transverse shear stresses [12, 13] and advanced high order models that
consider a parabolic distribution of shear stresses [14–21]. No previous models con-
cede the effect of transverse stretching in their study, which makes their models in-
accurate. Many quasi-3D theories exist in the literature as examples to surmount this
problem. Zenkour [22] use two-dimensional (2-D) and three-dimensional (3D) ana-
lytic solution to study the equilibrium behavior of exponentially functionally graded
plate submitted to transversally acting load. The dynamic and the stability behaviors
of FG plates taking into account the stretching effect and rotatory inertia, are ana-
lyzed by Matsunaga [23]. Neves et al. [24] utilized a new quasi-3D sinusoidal shear
deformation theory to analyze the bending and free vibration response of FG plates.
Jha et al. [25] presented a free vibration behavior of FG plates based on higher order
shear theories accounting for the stretching effect. Batra and Vidoli theory has been
used by Sheikholeslami and Saidi [26] to analyze the dynamic behavior without exci-
tation of FG plates based on Winkler-Pasternak elastic foundation. Hebali et al. [27]
used refined plate theory (RPT), including the thickness deformation effect, to study
the bending and free vibration of FG plates. Alijani and Amabili [28] the nonlinear
forced vibrations of FG rectangular plates simply supported movable and immovable
boundary conditions edges are investigated by considering the thickness deformation
effect. However, most of the previous models are computational costs because of the
number of additional unknowns involved. Consequently, a reduced quasi-3D model
proposed in this work is necessary.

Just five unknown displacement functions are utilized in the present model against
six or more unknown displacement functions used in the other higher-order theories.
The most interesting feature of this model is the trigonometric variation of the trans-
verse shear strains in the z-direction. It satisfies the zero traction on the plate’s upper
and lowest surfaces without other conditions such as shear correction factors. Ana-
lytical solutions of FG plate are obtained, and accuracy is confirmed by comparing
the achieved results with those in the literature.
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2 MATHEMATICAL FORMULATION

2.1 KINEMATICS

Based on the present theory and including the transverse normal stress (thickness
stretching effect), the kinematic of the plate can be described as

u(x, y, z, t) = u0(x, y, t)− z
∂w0

∂x
+ k1 f(z)

∫
θ (x, y, t) dx ,

v(x, y, z, t) = v0(x, y, t)− z
∂w0

∂y
+ k2 f(z)

∫
θ (x, y, t) dy ,

w(x, y, z, t) = w0(x, y, t) + g(z)ϕz(x, y, t) ,

(1)

where

(2) k1 = α2 , k2 = β2 .

In this work, the shape function f(z) is given as follows:

(3) f(z) = z
( 1

π
− 5

37
π
( z
h

)2)
,

where

(4) g(z) =
(df(z)

dz

)
.

The kinematic relations can be gotten as follows:
εx
εy
γxy

 =


∂u0,x
∂v0,y

∂u0,y + ∂v0,x

− z

∂w0,xx

∂w0,yy

2∂w0,xy

(5)

+ f(z)


k1θ
k2θ

k1
∂

∂y

∫
θdx+ k2

∂

∂x

∫
θdy

 ,

{
γyz
γxz

}
= g(z)


k2

∫
θdy + ∂ϕz,y

k1

∫
θdx+ ∂ϕz,x

 , εz = g′(z)ϕz .

The integrals terms appeared in the above equations should be resolved by a
Navier type method and can be given as follows:

∂

∂y

∫
θdx=A′

∂2θ

∂x∂y
,
∂

∂x

∫
θdy=B′

∂2θ

∂x∂y
,

∫
θdx=A′

∂θ

∂x
,

∫
θdy=B′

∂θ

∂y
,(6)
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where the coefficientsA′ andB′ are expressed according to the type of solution used,
in this case via Navier.

Therefore, A′, B′, k1 and k2 are expressed as follows:

A′ = − 1

α2
, B′ = − 1

β2
, k1 = α2, k2 = β2 ,(7)

where µ and β are used in Eq. 18.

2.2 CONSTITUTIVE RELATIONS

The linear constitutive relations of a FG plate can be expressed as

σij = 2µεij + λεkkδij .(8)

The coefficients µ and λ in terms of engineering constants are given below:

λ(z) =
E(z)

(1− 2ν) (1 + ν)
, µ(z) =

E(z)

2 (1 + ν)
.(9)

2.3 EQUATIONS OF MOTION

Hamilton’s principle is used herein to derive the equations of motion. The principal
can be stated in analytical form as

0 =

T∫
0

(δU+δV − δK)dt ,(10)

where δU is the variation of strain energy; δV is the variation of potential energy;
δK is the variation of kinetic energy.

The variation of strain energy of the plate is calculated by

(11) δU =

h/2∫
−h/2

∫
A

[σxδεx+σyδεy+σzδεz+τxyδγxy+τyzδγyz+τxzδγxz]dAdz

=

∫
A

[Nxδε
0
x+Nyδε

0
y+Nzδε

0
z+Nxyδγ

0
xy+M b

xδk
b
x+M b

yδk
b
y

+M b
xyδk

b
xy+M s

xδk
s
x+M s

yδk
s
y+M s

xyδk
s
xy+SS

yzδγyz+SS
xzδγxz]dA = 0 ,

where A is the surface. Substituting Eqs. (5) into Eqs. (11), the resulting forces and
moments N , M and S can be obtained by simply integrating stress as given in the
second expression of strain energy.
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The variation of potential energy of the applied loads can be expressed as

δV = −
∫
A

qδ(w0(x, y, t) + g(z)ϕz(x, y, t))dA ,(12)

where q is the distributed transverse load.
The variation of kinetic energy of the plate can be written as

δK =

h/2∫
−h/2

∫
A

[u̇δu̇+ v̇δv̇ + ẇδẇ]ρ(z)dAdz(13)

=

∫
A

{
I0[u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0]

− I1[u̇0δẇ0,x + v̇0∂δẇ0,y + ẇ0,xδu̇0 + ẇ0,yδv̇0]

+ I2[ẇ0,xδẇ0,x + ẇ0,yδẇ0,y]

− J1[u̇0δθ̇,x + θ̇,xδu̇0 + v̇0δθ̇,y + θ̇,yδv̇0]

+ J2[ẇ0,xδθ̇,x + θ̇,xδẇ0,x + ẇ0,yδθ̇,y + θ̇,yδẇ0,y]

+K2[θ̇,xδθ̇,x + θ̇,yδθ̇,y] + Js
1 [ẇ0δϕ̇z + ϕ̇zδẇ0] +Ks

2ϕ̇zδϕ̇z

}
dA ,

where dot-superscript convention indicates the differentiation with respect to the time
variable t; and I0, I1, J1, I2, J2, K2, Ks

2 are mass inertias defined as

(I0, I1, J1, J
s
1 , I2, J2,K2,K

s
2) =

h/2∫
−h/2

(1, z, f, g, z2, zf, f2, g2)ρ(z)dz .(14)

Substituting the expressions of δU , δV and δK from Eqs. (11), (12), and (13)
into Eq. (10) integrating by parts, and assembling the coefficients of δu0, δv0, δw0,
δθ, and δfz , the following corresponding equations of the plate are obtained:

δu0 :
∂Nx

∂x
+
∂Nxy

∂y
= I0ü0 − I1

∂ẅ0

∂x
− J1

∂θ̈

∂x
,(15a)

δv0 :
∂Nxy

∂x
+
∂Ny

∂y
= I0v̈0 − I1

∂ẅ0

∂y
− J1

∂θ̈

∂y
,(15b)

δw0 :
∂2M b

x

∂x2
+ 2

∂2M b
xy

∂x∂y
+
∂2M b

y

∂y2
+ q(15c)

= I0(ẅ0 + θ̈) + I1(
∂ü0
∂x

+
∂v̈0
∂y

)− I2∇2ẅ0 − J2θ̈ + Js
1 ϕ̈
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δθ : −k1M s
x − k2M s

y − (k1A
′ + k2B

′)
∂2M s

xy

∂x∂y
(15d)

+ k1A
′∂S

s
xz

∂x
+ k2B

′∂S
s
yz

∂y
+ q

= I0(ẅ0 + θ̈) + J1(
∂ü0
∂x

+
∂v̈0
∂y

)− J2∇2ẅ0 −K2θ̈ + Js
1 ϕ̈ ,

δϕz :
∂Ss

xz

∂x
+
∂Ss

yz

∂y
−Nz = Js

1(ẅ0 + θ̈) +Ks
2ϕ̈ .(15e)

3 EXACT SOLUTION FOR SIMPLY SUPPORTED FG PLATE

Rectangular plates are generally classified according to the type of support used. This
paper is concerned with the exact solutions of Eqs. (15a)–(15e) for a simply supported
FG plate.

The following boundary conditions are imposed at the edges:

v0 = w0 = θ =
∂θ

∂y
= ϕ = Nx = M b

x = M s
x = 0 at x = 0, a

u0 = w0 = θ =
∂θ

∂x
= ϕ = Ny = M b

y = M s
y = 0 at y = 0, b

(16)

Following the Navier solution procedure, the authors assume the following so-
lution from for u0, v0, w0, θ and fz that satisfies the boundary conditions given in
Eq. (16): 

u0

v0

w0

θ

ϕz


=
∞∑

m=1

∞∑
n=1



Umne
iwt cos(λx) sin(µy)

Vmne
iwt sin(λx) cos(µy)

Wmne
iwt sin(λx) sin(µy)

Xmne
iwt sin(λx) sin(µy)

Φmne
iwt sin(λx) sin(µy)


,(17)

where Umn, Vmn, Wmn, Xmn and Φmn are arbitrary parameters, ω is the is the
natural fundamental frequency; and λ, µ are defined as

µ = mπ/a and β = nπ/b .(18)

Substituting Eq. (17) and (18) into Eqs. (15a)–(15e), the analytical solutions can
be obtained from

(19)
(
[aij ]− ω2 [mij ]

) {
Umn Vmn Wmn Xmn Φmn

}T
=
{

0 0 0 0 0
}T

, i = j = 1, ..., 5 ,
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in witch

a11 = −(A11α
2 +A66β

2) , a12 = −αβ (A12 +A66) ,(20)

a13 = α(B11α
2 + (B12 + 2B66)β

2) ,

a14 = −α(Bs
11A

′k1α
2 +Bs

12B
′k2β

2 +Bs
66(A

′k1 +B′k2)β
2) ,

a15 = Lα , a22 = −α2A66 − β2A22 ,

a23 = β(B22β
2 + (B12 + 2B66)α

2) ,

a24 = −β[Bs
22B

′k2β
2 + α2(Bs

12A
′k1 +Bs

66(A
′k1 +B′k2))] ,

a25 = Lβ , a33 = −α2
(
D11α

2 + (2D12 + 4D66)β
2
)
−D22β

4 ,

a34 = Ds
11A

′k1α
4 +Ds

12(A
′k1 +B′k2)β

2α2 +Ds
22B

′k2β
4

+ 2Ds
66(A

′k1 +B′k2)β
2α2 ,

a35 = −La(α2 + β2) ,

a44 = −(2(k1β
2Hs

66 +Hs
66α

2k2) + k1(H
s
11α

2 + β2Hs
12 +A44

s )

+ k2(β
2Hs

22 +A55
s +Hs

12α
2))

a45 = −[As
44α

2 +As
55β

2 +R(α2 + β2)] ,

a55 = −(As
44α

2 +As
55β

2 +Ra)

and

m11 = m22 = −I0 , m13 = αI1 , m14 = αJ1 , m23 = βI1 ,(21)

m24 = βJ1 , m33 = −[I0+I2(α
2+β2)] , m34 = −[I0+J2(α

2+β2)] ,

m44 = −[I0 +K2(α
2 + β2)] , m35 = m45 = −Js

1 , m55 = −Ks
2 ;

non-dimensional parameters:

ω̂ = ωh

√
ρ

G
, ω̃ = ω

a2

π2

√
ρh

D
, D =

Eh3

12 (1− ν2)
, ω̄ = ωh

√
ρm
Em

.(22)

4 NUMERICAL RESULTS

In this section, various numerical examples are presented for free vibration analyses
of a simply supported FG plate. The proposed model will be first validated through
the comparison with the existing data available in literature. For this, two types of
FGMs plates are considered: Al/Al2O3 and Al/ZrO2.

The material properties of FG plates are reported in Table 1.
For validation of the present improved theory, as a first example (Table 2). a com-

parison parameters of non-dimensional natural frequency is realized for an isotropic
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Table 1: Material proprieties used in the FG plates

Proprieties Metal Ceramic
Al A∗ A2O3 ZrO2 ZrO∗

2

E (Gpa) 70 68.9 380 200 211
ν 0.3 0.33 0.3 0.3 0.33

P (kg/m3) 2702 2700 3800 5700 4500

rectangular plate, with the solution of Srinivas et al. [30] based on three-dimensional
elasticity solutions, Reddy and Phan [31] based on third-order shear deformation
theory, Abualnour et al. [29] and Hebali et al. [27] founded on quasi-3D shear defor-
mation theory. The results of the present theory approve very well with the 3D and
quasi-3D theories. However, the third shear deformation plate theory [31], which
neglected the stretching effect (εz = 0), slightly underestimates frequency in com-
parison to the present quasi-3D theory and 3D.

Table 2: Non-dimensional natural frequencies ω̂ of Al/Al2O3 an isotropic plate with
ν = 0.3, a/h = 10 and a/b = 1

m n Present Hebali et al. [27] Abualnour et al. [29] Srinivas et al. [30] Reddy and Phan
εz 6= 0 εz 6= 0 εz 6= 0 3-D [31]

1 1 0.0933 0.0933 0.0933 0.0932 0.0931
1 2 0.2230 0.2228 0.2231 0.2226 0.2222
2 2 0.3424 0.3422 0.3429 0.3421 0.3411
1 3 0.4175 0.4173 0.4182 0.4171 0.4158
2 3 0.5241 0.5240 0.5254 0.5239 0.5221
3 3 0.6892 0.6890 0.6912 0.6889 0.6862
2 4 0.7514 0.7512 0.7537 0.7511 0.7481
1 5 0.9268 0.9268 0.9305 0.9268 0.9230
4 4 1.0890 1.0890 1.0938 1.0889 1.0847

In the next example (Table 3), the validation of the obtained results is carried out
for the present quasi-3D model by comparing with those computed via the 3D Ritz
method presented by Liew et al. [32], 3D elasticity solutions presented by Alibeigloo
[33] and Quasi-3D trigonometric plate theory presented by Bessaim et al. [34]. It can
be observed that the results of the 3D Ritz method presented by Liew et al. [32] and
3D elasticity solutions presented by Alibeigloo [33] are to bring nearer to the present
results. Also, Table 3 reveals that the current theory only gives appropriate results to
those achieved by the quasi-3D plate theory developed by Bessaim et al. [34]. This
demonstrates that identical precision is achievable with the suggested model.
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Table 3: Comparison of dimensionless first dimensionless natural frequency ω̃ of
Al/Al2O3 the isotropic rectangular plate (a/b = 1.5)

Theory a/h
5/2 10/3 5 10 100

Abualnour et al. [29], εz 6= 0 1.0996 1.2122 1.3237 1.4120 1.446
3D Ritz method, Liew et al. [32] 1.0954 1.2088 1.3209 1.4096 1.444
Elasticity 3D, r Alibeigloo [33] 1.0940 1.2075 1.3200 1.4096 1.444
Bessaim et al. [34] εz 6= 0 1.0996 1.2122 1.3237 1.4120 1.446
Present εz 6= 0 1.0959 1.2098 1.3229 1.4125 1.447

The non-dimensional fundamental frequency variation ω is illustrated in Fig. 1 of
simply supported edges FG plate rectangular plates versus the material index k for
three values of the side-to-thickness ratios (a/h). Whereas a rapid increase of the
non-dimensional fundamental natural frequency until a value of k = 2. Proceeding
from this value, the natural frequency end to keep a more or less constant shape. On
the other hand, the increase in the a/h ratio tends to decrease frequencies. In other
words, the frequencies decrease as the thickness of the plate increases.

Figure 2 presents the fundamental natural frequency variation of ω of simply sup-
ported edges FG plate versus the geometrical ratio (b/a) for different values of the
side-to-thickness ratios (a/h). The highest frequencies are obtained for a square plate
(b/a = 1).

dimensional fundamental natural frequency until a value of k=2, Proceeding from this 

value, the natural frequency end to keep a more or less constant shape. On the other hand, 

the increase in the a/h ratio tends to decrease frequencies. In other words, the frequencies 

decrease as the thickness of the plate increases. 

Figure 2 presents the fundamental natural frequency variation of   of simply supported 

edges FG plate versus the geometrical ratio (b/a) for different values of the side-to-

thickness ratios (a/h). The highest frequencies are obtained for a square plate (b/a=1).  

Figure 3 illustrates the variation of the non-dimensional fundamental natural frequency 

  of simply supported FG plate rectangular plates as a function of the side-to-thickness 

ratio (a/h). As observed, the evolution in the (a/h) ratio increases the frequencies, and 

the increase in the material index k reduces them. Also, the homogeneous ceramic plate 

has the highest frequency. 

In figure 4, we have plotted the same variation but for different values of the material 

index k. The highest frequencies are achieved for a homogeneous ceramic plate and the 

lowest for a metal plate. The increase in index k decreases the frequencies. 

The variation of the non-dimensional fundamental natural frequency   of simply 

supported FG plate is given in Figure 5 for the various values of Em/Ec. It is clear that 

the increase in ratio the Em/Ec increases the frequencies, and the increase in the power 

index k reduces them. 

0 5 10 15 20
2,0

2,5

3,0

3,5



 a/h=2

 a/h=5

 a/h=10

Power law index k

b=2a

 
Fig.1: Non-dimensional fundamental frequency   of FG rectangular plates with simply 

supported edges (b = 2a) as a function of material gradient index (k) for different (a/h). 

Fig. 1: Non-dimensional fundamental frequency ω of FG rectangular plates with
simply supported edges (b = 2a) as a function of material gradient index (k) for
different a/h.
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Fig.2: Non-dimensional fundamental frequency   of simple supported FG plates as a 

function of aspect ratio (b/a) for different material gradient index (k) for a/h = 10 
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Fig.3: Non-dimensional fundamental frequency   of simply supported FG rectangular 

plates (b = 2a) as a function of side to thickness ratio (a/h) for different material index 

(k) 

 

Fig. 2: Non-dimensional fundamental frequency ω of simple supported FG plates as
a function of aspect ratio (b/a) for different material gradient index (k) for a/h = 10.

Figure 3 illustrates the variation of the non-dimensional fundamental natural fre-
quency ω of simply supported FG plate rectangular plates as a function of the side-
to-thickness ratio (a/h). As observed, the evolution in the (a/h) ratio increases the
frequencies, and the increase in the material index k reduces them. Also, the homo-
geneous ceramic plate has the highest frequency.
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Fig.2: Non-dimensional fundamental frequency   of simple supported FG plates as a 

function of aspect ratio (b/a) for different material gradient index (k) for a/h = 10 
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Fig.3: Non-dimensional fundamental frequency   of simply supported FG rectangular 

plates (b = 2a) as a function of side to thickness ratio (a/h) for different material index 

(k) 

 

Fig. 3: Non-dimensional fundamental frequency ω of simply supported FG rectangu-
lar plates (b = 2a) as a function of side to thickness ratio (a/h) for different material
index (k).
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In Fig.4, we have plotted the same variation but for different values of the material
index k. The highest frequencies are achieved for a homogeneous ceramic plate and
the lowest for a metal plate. The increase in index k decreases the frequencies.

The variation of the non-dimensional fundamental natural frequency ω of simply
supported FG plate is given in Fig. 5 for the various values of Em/Ec. It is clear that
the increase in ratio Em/Ec increases the frequencies, and the increase in the power
index k reduces them.
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5 CONCLUSIONS

Free vibration analyses of FG plates are realized using an improved quasi-3D theory,
including the stretching effects. This theory considers hyperbolic function shape to
describe the variation of transverse shear stress and respects the nullity conditions on
the top and bottom surfaces of the plate. The kinematic of the current model is ad-
justed by considering integral terms, which results in a reduced number of unknowns
compared with other theories. Various examples show that the current theory is more
accurate than other HSDTs, which use variables. Based on the present work, some
of the highlighted conclusions are summarized as follows:

• The accuracy of the current theory has been checked, and an excellent agree-
ment is observed.

• The inclusion of the stretching effect (εz 6= 0) leads to an increase in the
fundamental natural frequency.

• The quasi-3D model has a significant role for thick and moderately thick FG
plates and must be considered in the modeling and calculation process.

• The present quasi-3D theory is accurate and straightforward in forecasting the
vibration analysis of FG plates.
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